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Prologo

Hoy en dia el procesamiento digital de senales se ha convertido en una herramienta
indispensable en diversas areas del conocimiento, desde la medicina hasta las co-
municaciones, pasando por la industria musical y el disefio de sistemas electronicos.
En cualquiera de estas areas, asi como de muchas otras, que requieran analisis y
manipulacién de la informacion, para, por ejemplo, mejorar su calidad o identificar
patrones.

Dentro del ambito del procesamiento digital de senales, el lenguaje de programacion
Python se ha convertido en una herramienta muy popular debido a su facilidad de
uso, gran cantidad de librerias disponibles y su capacidad para manejar grandes
volimenes de datos. Es por ello que este libro titulado “Procesamiento digital de
senales utilizando Python” esta escrito para proporcionar una base solida en la
tematica, con énfasis en la implementacion practica apoyandose en este lenguaje
de programacion. Por ello, cada capitulo incluye ejemplos de codigo en Python y
problemas resueltos para ayudar a los estudiantes a aplicar los conceptos teéricos
presentados. Esta enfocado a estudiantes de pregrado de ingenieria, especialmente
de sistemas, electronica, telecomunicaciones, mecatronica, multimedia y programas
afines.

El libro esta organizado en seis capitulos que abarcan desde la digitalizacion de
senales analogas, hasta el procesamiento digital de imagenes. Se recomienda su lec-
tura de forma secuencial, para un mejor entendimiento de las explicaciones, ecua-
ciones, ejemplos y codigos presentados en el documento.

En el primer capitulo se introduce el concepto de senales digitales y la importancia
de su andlisis y procesamiento a través de operaciones de muestreo y cuantizacion,
asi como las implicaciones que tiene la seleccion de la frecuencia de muestreo y el
numero de bits de cuantizacion, tanto en la calidad de la senal muestreada, como en
el almacenamiento y transmision de la senal.

En el segundo capitulo se presentan la Transformada Z de sefales discretas de du-
racion finita, la funcién de transferencia de sistemas LTI, diagramas de bloques de
sistemas discretos, y la diferencia entre filtros FIR e IIR a partir de la ecuacién de
entrada-salida, funcion de transferencia y respuesta al impulso del sistema. Por su
parte, en el tercer capitulo se explica el diseno de filtros de promedio, el filtrado de
senales ID, su comportamiento en frecuencia, asi como la relacion entre el orden



del filtro y la frecuencia de corte. Adicionalmente, se presenta el filtro Leaky, del
mismo modo que sus semejanzas y diferencias con el filtro de promedio.

En los capitulos cuatro y cinco se abordan los métodos de disenio de filtros FIR e
lIR, las graficas de polos y ceros, de la misma manera que su relacion con la fre-
cuencia de corte y el tipo de filtro disenado (pasa-bajo, pasa-alto, pasa-banda). En
el dltimo capitulo, se introduce al lector en conceptos basicos de procesamiento
de imagenes, como tipos de imagenes (blanco-negro, escala de grises, e imagenes a
color), modelos de color RGB y HSV, ecualizacién de imagenes, tipos de ruido en
imagenes, filtros espaciales, convolucion en imagenes, deteccidon de bordes en ima-
genes y compresion de imagenes.

Esperamos que este libro sea de gran utilidad para aquellos estudiantes que deseen
aprender métodos y técnicas de procesamiento digital de senales, utilizando Python,
y que les permita resolver problemas reales de ingenieria, de esta era digital.
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CAPITULO 1.

Del Mundo Analogo al Mundo Digiral

En este capitulo encontraras una breve introduccion al procesamiento digital de
senales, especificamente en relacion con los conceptos de muestreo, cuantizacion y
costo de almacenamiento/transmision asociados al proceso de conversion analogo
a digital (A/D).

Al finalizar el capitulo, deberas estar en capacidad de:

l. Explicar el concepto de muestreo de senales analogas/continuas.

2. Explicar el concepto de cuantizacion de muestras.

3. Seleccionar adecuadamente los parametros de frecuencia de mues
treo y bits de resolucion en la conversion A/D, de acuerdo con el
espectro de la sefial y su comportamiento en el dominio del tiempo.

4. Explicar el costo de almacenamiento/transmision del proceso de
conversion A/D de senales continuas/analogas.

5. Explicar el efecto en frecuencia de muestrear una sefial analoga/
continua.

El Procesamiento Digital de Senales es un conjunto de técnicas y métodos que per-
miten manipular una senal para obtener informacién de ella (patrones), o para mo-
dificarla o transformarla. Por ejemplo, la sefnal de voz es una sefal andloga en tiem-
po continuo que contiene informacion de entonacion, género del hablante, idioma,
entre otros, que puede ser utilizada para identificar qué persona esta pronunciando
un mensaje o discurso. En este caso, el procesamiento digital de la sefhal se enfoca
en identificar patrones de voz que permitan caracterizar al hablante, y compararlo
con una base de datos previamente almacenada en el sistema. También, hoy en dia
encontramos dispositivos celulares que utilizan reconocimiento facial como medio
para desbloquear el acceso al sistema, sustituyendo o reemplazando la opcion cla-
sica de clave numérica; por lo cual, el celular debe identificar “caracteristicas faciales”
que permitan corroborar si el rostro que esta frente a la camara es el autorizado
para desbloquearlo.

Pero jcomo pasamos del mundo analogo/continuo al mundo digital/discreto? Gran
parte de las senales que encontramos en la naturaleza son analogas (infinitos valo-
res de amplitudes posibles) que se van actualizando a lo largo de la variable inde-
pendiente, que tipicamente es el tiempo (con infinitos valores de tiempo posibles),
que deben ser transformadas antes de poder ser utilizadas por un sistema digital.
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El proceso se conoce como conversion analogo-digital (6 A/D), el cual consiste en
seleccionar un nimero finito de valores de tiempo en los que representaremos sus
amplitudes en un numero finito de bits. De tal forma que tanto la variable indepen-
diente (tiempo), como la variable dependiente (amplitud de la senal) son discretiza-
dos. En la Figura | encontraras una grafica ilustrativa de la conversion A/D.

Figura 1. Diagrama general de un proceso de conversién A/D.

En las siguientes subsecciones encontraras en detalle los conceptos de muestreo
y cuantizacion, su costo de almacenamiento y transmision, asi como el efecto del
muestreo en el espectro de la sefal.

I.I. MUESTREO DE LA SENAL ANALOGA/CONTINUA

En la primera parte del proceso de conversion A/D, se selecciona un nimero de
muestras por segundo de la sefal, conocido como frecuencia de muestreo (f;). De
esta forma, si, por ejemplo, la sefal tiene una duracion de 10 segundos y la frecuen-
cia de muestreo es de 8 kHz, entonces, la cantidad total de muestras es de 80.000.
El valor de f; en el caso de muestreo equi-espaciado, debe satisfacer el criterio de

Nyquist, el cual establece que:
fs 22 * finax Ecuacion |

Donde finax corresponde a la frecuencia maxima de la senal de tiempo continuo. Por
ejemplo, si el espectro de nuestra senal tiene el comportamiento de la Figura 2, en-
tonces la frecuencia de Nyquist es de 8 kHz. En otras palabras, una f; = 8 kHz solo

es adecuada para senales cuya fn« = 4 kHz.
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Figura 2. Ejemplo de espectro de sefial de voz, f; = 8 kHz.

La lectura y procesamiento de un archivo de voz (ej. en formato wav), esta soportado
en muchos lenguajes de programacion. Para el caso del lenguaje Python, podemos
utilizar la libreria Librosa con el fin de cargar la senal en el entorno de ejecucién (por
ejemplo, en un Jupyter notebook como Colaboratory). Esta libreria permitira también
visualizar la senal o conocer la f; con la que fue muestreada.

Especificamente, en lenguaje Python escribimos el siguiente codigo para la visualiza-
cién de la senal en el dominio del tiempo:

import librosa

import librosa.display

import matplotlib

import matplotlib.pyplot as plt
import numpy as np

import IPython

from scipy.io import waviile
from scipy.fft import fftshift

plt.rcParams [ “figure.figsize”] = (14,5)
filename = ‘audio.wav’

# Se debe asignar sr=None para que se conserve la fs original del audio.
# En caso contrario, se re-muestrea a 22050 Hz.

audio, fs = librosa.load(filename, sr=None)
librosa.display.waveplot (audio, sr=fs);

print (“frecuencia de muestreo de la sefial:”, fs, “Hz”)
print (“cantidad de muestras de la sefial:”, len(audio))
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Obteniendo como resultado:

frecuencia de muestreo de la sefial: 8000 Hz
cantidad de muestras de la sefial: 24000

Figura 3. Ejemplo de sefal de voz en el dominio del tiempo.

De acuerdo con la Figura 3, esta senal de voz tiene una duracién de 3 segundos, y
su amplitud se encuentra comprendida entre [-0.45 0.45], aproximadamente. Adi-
cionalmente, en |.7 segundos, se percibe un incremento significativo de la amplitud
de la senal (tanto positiva como negativa) en relacién con los demas valores de
amplitud a lo largo de los 3 segundos. Teniendo en cuenta que la f;= 8 kHz, el total
de muestras de la senal es de 24K.

Si queremos que el audio se ajuste al maximo volumen posible, podemos escalar su
amplitud, asi:

norm = max (np.absolute([min(audio), max(audio)]))
audio= audio /norm
librosa.display.waveplot (audio, sr=fs);

Figura 4. Ejemplo de sefial de voz en el dominio del tiempo, con normalizacién de amplitud.
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Esta nueva senal tiene una amplitud mayor a la sefal original, y ahora se encuentra
en el rango de [-1 1].Adicionalmente, podemos reproducir el audio, con el siguiente
codigo:

IPython.display.Audio (audio, rate=fs)

El cual genera un botén de reproduccion

Posteriormente, es posible graficar el espectro de la sefnal con el siguiente codigo
en Python:

import scipy.fftpack as fourier

L=len (audio)

transformada = fourier.fft (audio)
magnitud = abs (transformada)

magnitud lateral = magnitud[0:L//2]
fase = np.angle (transformada)
frecuencias = fs*np.arange (0, L//2)/L

plt.plot (frecuencias, magnitud lateral)
plt.xlabel (‘Frecuencia (Hz)’, fontsize=’10")
plt.ylabel (‘Amplitud FFT’, fontsize="10")
plt.show ()

Figura 5. Espectro de la sefal de voz de la Figura 4.

Pero jcomo sabemos si la frecuencia de muestreo de la senal en el proceso de con-
version A/D fue adecuada? La respuesta la obtenemos en su espectro. Por ejemplo,
para nuestro caso, las amplitudes de la FFT para frecuencias mayores de 2 kHz son
muy cercanas a cero y distan significativamente de las amplitudes en frecuencias
inferiores a 1 kHz. De tal forma que, la mayor parte de la energia de la senal se
encuentra en las frecuencias menores a |kHz, y entonces f; = 8 kHz es adecuada. Si
por el contrario, en frecuencias cercanas a 4 kHz las amplitudes de la FFT fuesen
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comparativamente altas en relacién con frecuencias menores, muy posiblemente la
fs seleccionada seria incorrecta, y tendriamos que escoger un valor mayor.

Supongamos que nuestra senal corresponde a un fragmento de musica de un con-
cierto de violin (Figura 6), cuyo espectro se presenta en la Figura 7.

Figura 6. Ejemplo de sefial de musica en el dominio del tiempo.

A diferencia de la senal de voz, las amplitudes de la FFT cercanas a 4 kHz no son
significativamente pequenas en relacién con las amplitudes en frecuencias menores
a 1 kHz, por lo que utilizar una f; > 8 kHz es necesario, por ejemplo f; = 22 kHz.

Figura 7. Espectro de la sefial de musica de la Figura 6.

Hasta aqui, hemos comprendido que no todas las senales necesitan la misma fre-
cuencia de muestreo, y que a medida que la frecuencia maxima de la senal conti-
nua es mayor, debemos muestrear la senal con un nimero mayor de muestras por
segundo. ;Pero qué ocurriria si seleccionamos una f; no adecuada, es decir que no
cumpla el criterio de Nyquist? La respuesta se ilustrara a través de ejemplos.

Supongamos entonces que la senal de voz de la Figura 4 la re-muestreamos a 1 kHz,
es decir, solamente conservaremos las componentes de frecuencias de los 0 Hz
hasta los 500 Hz, como se presenta en la Figura 8.



PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 1 9|

Figura 8. Espectro de la sefal de voz de la Figura 4, re-muestreada a | kHz.

Esta nueva senal tiene el efecto de escucharse la voz ahogada, dado que, no cuenta
con componentes de frecuencias altas, relacionadas con el detalle de la senal. Este
fendmeno, el cual ocurre cuando la frecuencia de muestreo no es al menos el doble
de la frecuencia maxima de la senal, se conoce como dliasing.

Finalmente, es necesario aclarar que, aunque en un dispositivo digital como un PC
podemos graficar una sefal con apariencia de continua/andloga, estas sehales son en
realidad discretas/digitales. Internamente, se realiza un proceso de interpolacion que
permite unir las amplitudes discretas para que luzcan como una senal que varia para
valores infinitos de tiempo.

Especificamente en lenguaje Python, se puede utilizar la libreria Matplotlib para gra-
ficar sefales uni-dimensionales (D), con dos opciones de visualizacion: plot para
tiempo continuo, stem para tiempo discreto.A diferencia de la libreria de Librosa, es
necesario definir un vector de tiempos previo a la visualizacién.

A continuacion, se presenta el codigo en Python para las dos formas de visualizacion.

t = np.arange (0, len(audio)/fs,1/fs)
plt.rcParams [ “figure.figsize”] = (14,8)

ax = plt.subplot(2, 1, 1)

plt.plot (£[8000:8100], audio[8000:81001])

plt.title (“Gréfica sefial de voz utilizando plt.plot”)
ax = plt.subplot(2, 1, 2)

plt.stem(audio[8000:81007)

plt.title (“Gréafica sefial de voz utilizando plt.stem”)
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Figura 9. Ejemplo de sefial de voz con dos formas distintas de visualizacién.

En la Figura 9a se graficaron 0.0125 segundos de la senal de voz de la Figura 4, com-
prendidos en el rango [| 1.0125) segundos, que corresponden a la interpolacion de
100 muestras de la senal de voz en el rango [8000 8100). Aunque en este libro utili-
cemos en algunas ocasiones plot y en otras stem, el estudiante debera siempre tener
en cuenta que se estan graficando senales discretas en el tiempo, con un niumero
finito de bits de resolucion.

1.2. CUANTIZACION DE LAS MUESTRAS

Una vez se ha muestreado la sefal, el siguiente paso (el cual se realiza casi de forma
paralela en el conversor A/D) consiste en representar mediante bits a la amplitud de
la senal discreta. Existen diversos formatos de representacion de datos, por ejem-
plo, magnitud, magnitud + signo, punto flotante, entre otros. Supongamos que nuestro
conversor trabaja con el formato magnitud + signo, donde el MSB (Most Significant Bit:
bit mds significativo) corresponde al signo del dato, y los restantes bits a la magnitud.
De tal forma que, si el MSB es igual a |, entonces la amplitud es negativa; en caso
contrario, la amplitud es positiva.

Ahora bien, los conversores permiten trabajar con diferente nimero de bits de con-
version por muestra, lo que se conoce como bits de resolucion. A mayor cantidad
de bits, la senal digital se escuchara mas fiel a la senal analoga. Tipicamente, podemos
encontrar resoluciones de 8, 16,24 y 32 bits.

Supongamos que nuestro audio que inicialmente se encontraba en el rango [-1 1]
lo cuantizamos con 4 bits en formato magnitud + signo. Entonces, tenemos 3 bits
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para la magnitud de la senal y | bit para el signo, de tal forma que cada incremento
de amplitud de 1/23 tendra un nuevo cédigo digital. Es decir, a todas las amplitudes
del audio en el rango [0 1/23) se les asigna el cédigo 0000, a todas las amplitudes
en el rango [1/23 2/23) se les asigna el codigo 0001, y asi sucesivamente. La Tabla
| presenta la asignacion de codigos por rangos de amplitud de la sefal.

Tabla I.Ejemplo de cuantizacion con 4 bits con formato magnitud + signo, para una senal
en el rango [-1 I].

De acuerdo con la Tabla |, dos amplitudes que solo se diferencien en el signo (ej.
-0.6 y 0.6) tendran el mismo codigo excepto en su MSB (en este caso, | 100 y 0100).
A medida que aumenta el nimero de bits de resolucion, el rango de amplitudes que
comparte el mismo cédigo se va haciendo mas pequeno. Por ejemplo, si la senal con
rango analogo de [-1 1] la cuantizamos a |6 bits (15 de magnitud y | de signo), cada
1/215 (es decir 30.5*106) tendra un codigo digital distinto.

Para ilustrar el impacto de la cantidad de bits de resolucion, utilicemos las mismas
senales discretas de la seccidn anterior, la senal de voz y la de audio, para ilustrar el
impacto de los bits de resolucion en la calidad de la senal digital/discreta. El archivo
audio.wav tiene |6 bits de resolucion.Vamos a re-cuantizarlo a 8 bits (Figura 10), con
el siguiente cédigo en Python:

bits = 8

audio 8bit = (audio* 2**bits) .astype(int)
audio 8bit = audio 8bit / 2**bits
librosa.display.waveplot (audio 8bit, sr=fs)

Figura 10. Ejemplo de senal de voz cuantizada a 8-bits.
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y reproducimos la senal, asi:

| IPython.display.Audio(audio 8bit, rate=fs)

El efecto es que escuchamos ruido de fondo en la seal, pero el mensaje seguira sien-
do legible. Ahora, disminuiremos la resolucion a 6 bits (Figura | I),y compararemos
los resultados con los obtenidos previamente.

bits = 6

audio 6bit = (audio* 2**bits) .astype(int)
audio 6bit = audio 6bit / 2**bits
librosa.display.waveplot (audio 6bit, sr=fs);

IPython.display.Audio(audio 6bit, rate=fs)

Figura I 1. Ejemplo de sefal de voz cuantizada a 6-bits.

En el audio re-cuantizado a 6 bits se escuchan saltos de amplitud en el mensaje. La
calidad del audio en términos de legibilidad ha disminuido.

Finalmente, se re-cuantiza el audio a 3 bits (Figura 12).A diferencia de los casos an-
teriores, la sefal re-cuantizada no tiene contenido inteligible (es decir, no se entien-
de lo que se dice), dado que la amplitud dista significativamente de la sefal original
cuantizada a |6 bits (Figura 4).

bits = 3

audio_3bit = (audio* 2**bits).astype(int)
audio_3bit = audio_3bit / 2**bits
librosa.display.waveplot(audio_3bit, sr=fs)
IPython.display.Audio(audio_ 3bit, rate=fs)

Figura 12. Ejemplo de sefal de voz cuantizada a 3-bits.
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Posteriormente, seleccionamos el archivo music.wav el cual tiene también |6 bits de
resolucion. Aplicaremos dos re-cuantizaciones: de 8 bits y de 3 bits.

# Re-cuantizacidén a 8 bits del registro de musica

bits = 8

music 8bit = (music* 2**bits).astype(int)

music 8bit = music_ 8bit / 2**bits

fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
librosa.display.waveplot (music 8bit, sr=fs2, ax=ax[0])
ax[0].set (title='Masica re-cuantizada a 8 bits’)
ax[0].label outer|()

# Re-cuantizacidén a 3 bits del registro de musica
bits = 3

music 3bit = (music* 2**bits) .astype(int)

music 3bit = music 3bit / 2**bits
librosa.display.waveplot (music 3bit, sr=fs2, ax=ax[l])
ax[l].set (title='Misica re-cuantizada a 3 bits’)
ax[1].label outer()

Con la re-cuantizacion a 8 bits (Figura |3a), la seial es muy similar a la original cuan-
tizada a 16 bits (Figura 6); mientas que la re-cuantizada a 3 bits (Figura |3b), tanto
graficamente como de forma auditiva, se aleja de la senal original.

Figura 13. Ejemplo del efecto de re-cuantizacion de la sehal de musica a 8 bits y a 3 bits.

Por lo anterior, es evidente que la seleccion de la cantidad de bits de resolucion jue-
ga un papel muy importante en la calidad de la senal discreta/digital. En la siguiente
subseccion abordaremos las implicaciones que tiene a nivel de costo de almacena-
miento y de transmision el valor de bits de resolucion seleccionado.
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1.3. COSTO DE ALMACENAMIENTO/TRANSMISION
EN TERMINOS DE LA FRECUENCIA DE MUES-
TREOY NUMERO DE BITS DE RESOLUCION

Hasta aqui hemos evidenciado la importancia de seleccionar adecuadamente el va-
lor de frecuencia de muestreo y de bits de resolucion cuando vamos a convertir una
senal continua/andloga en discreta/digital. Recordemos que la notacion “continua”y
“discreta” hace alusion a la variable independiente (tipicamente el tiempo), mientras
que “andloga”y “digital” corresponde con la amplitud de la senal (ej. voltios.,amperes,
entre otros). Si la cantidad de valores en un rango de tiempo es infinita, la senal es
continua; en caso contrario, es discreta. De forma similar, si la cantidad de valores
diferentes de amplitud en un rango es infinita, la senal es analoga; en caso contrario,
es digital.

Aunque podriamos pensar que tanto la f_s seleccionada como los bits de resolucién
deberian ser los mas altos posibles en beneficio de la calidad de la senal (similitud
con la sefhal continua/analoga original), debemos tener presente que existe un costo
asociado con el almacenamiento y la transmision de la sehal. Este concepto lo ex-
plicaremos a través de dos casos.

Caso I:
Supongamos que se ha digitalizado una senal de voz de 2.777 horas (exacta-
mente 10.000 segundos), con f; = 24 kHz y 32 bits de resolucion. Entonces,
la cantidad de bits total de la senal digital/discreta es:

cantidad = Time* f; *res [bits] Ecuacion 2

Donde Time es la duracién de la sefal en segundos, f; es la frecuencia de
muestreo, y res es la cantidad de bits de resolucion.

De tal forma que, cantidad = 10.000 % 24.000 x 32 = 7.68 Gb, que corres-
ponde a 960 MB.

Caso 2:
La misma sefal de voz del Caso | se digitalizé con f;= 8 kHz y 16 bits de
resolucion. Entonces, cantidad = 10.000 x 8.000 x16 = 1.28 Gb, que equi-
vale a 160 MB.

Supongamos ahora que nuestro plan de Wi-Fi es de 10 MBps (donde Bps: bytes por
segundo) y queremos descargar la seial de voz que se encuentra en dos paginas de
internet. La primera pagina utilizé los parametros de conversion del Caso |; mien-
tras que la segunda pagina utilizé los parametros de conversion del Caso 2. Enton-
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ces, la descarga del archivo en la primera pagina de internet tomaria 96 segundos (|
minuto y 36 segundos), mientras que, en la segunda pagina de internet tomaria 16
segundos. Es evidente que prefeririamos descargar el archivo de la segunda pagina
de internet porque nos tomaria la sexta parte en relacion con el tiempo de descarga
en la primera pagina.

Pero ila calidad de la senal discreta/digital obtenida con los parametros de conver-
sion del Caso 2 es lo suficientemente buena? La respuesta es si, dado que, tanto la f;
como la resolucion son adecuados para senales de voz. No es necesario discretizar
una senal que solo contiene voz con una f; = 24 kHz, dado que, como vimos pre-
viamente, la mayor parte de la energia de la senal se encuentra en las frecuencias
inferiores a 1 kHz. Adicionalmente, la resolucion de |6 bits permite cambios en el
codigo digital para valores de amplitud muy pequenos.

Como conclusién, los valores de f s y bits de resolucion no deberian ser tan
pequefnos que nos degraden la calidad de la senal, pero tampoco excesivamente
altos, que impliquen altos costos de almacenamiento y/o transmision de la senal.

1.4. EFECTO EN EL ESPECTRO DE MUESTREAR UNA
SENAL DE TIEMPO CONTINUO

En el canal de YouTube' podras encontrar el video titulado “Espectro sefiales discre-
tizadas” en el que se explica paso a paso el efecto de muestrear una senal continua
en términos de su espectro. Este concepto lo explicaré de forma matematica a
continuacion.

Primero, partimos de una sefal continua en el dominio del tiempo, la cual posee un
numero infinito de valores de tiempo en el rango de [t; t, donde t; es el tiempo
inicial de la sefal, y tr es el tiempo final. Por ejemplo, supongamos que t; = 0 s, mien-
tras que ty = 10 s. Esa senal la vamos a denominar x(t) y su espectro X(f).

Es decin,
FT
x(t) = X(f) Ecuacion 3

Supongamos que el espectro de la senal x(t) esta comprendido en el rango [0 4]kHz,
por lo que decidimos muestrear la sefal con f; = 8 kHz. La forma de hacerlo es multipli-
car x(t) con un tren de impulsos periodico de amplitud igual a | y T = 1/f;, que denomi-
naremos m(t). En nuestro caso, el periodo del tren de impulsos es T=18kHz=125 us. El
espectro de m(t) lo denominaremos M(f), el cual corresponde a otro tren de impulsos
cuya amplitud es 1T y espaciado cada f;.

1 https://www.youtube.com/channel/UCrasAFtm_6B9vOIShGtllig
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Es decir,
FT
m(t) - FT M(f) Ecuacion 4

El efecto en el dominio del tiempo de multiplicar x(t) con m(t), es que la senal
continua queda muestreada cada T segundos, obteniendo una sefal discreta que de-
nominaremos x/n]. En el dominio de la frecuencia, el efecto es la convolucion entre
los espectros de X(f) y M(f), es decir, se generan “réplicas” del espectro X(f) cada

fs Hz.A este espectro resultante lo denominaremos X, (f), asi:

DFT

x[n] = Xn (f) Ecuacion 5

El efecto de réplicas en el espectro se explica recordando que cuando se convo-
luciona una senal por un impulso desplazado en k, el resultado es la misma senal
desplazada en k. De tal forma que la convolucion de X(f) con el impulso ubicado en
el origen es el mismo espectro X(f); la convolucién de X(f) con el impulso ubicado
en f; es X(f- fs); la convolucion de X(f) con el impulso ubicado en 2 fses X(f-2f;); y
asi sucesivamente.Teniendo en cuenta que la senal m(t) contiene infinitos impulsos
separados f;, entonces, la cantidad de réplicas de X(f) es también infinita y estan
separadas f;, Adicionalmente, su amplitud se vera afectada por el valor 1.

Hasta aqui, vamos a resumir lo explicado anteriormente:

Tabla 2. Muestreo con tren de impulsos de duracién infinita y su efecto en frecuencia.

Ahora bien, teniendo en cuenta que en la practica el tren de impulsos es de duracion
finita, podemos multiplicar m(t) por una ventana w/n], para limitar la duracion del tren
de impulsos en el rango [t; tf]. Entonces, en el dominio de la frecuencia, el espectro
del tren de impulsos, M(f), se convoluciona con el espectro de la ventana, W(f).
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Dado que existen diversos tipos de ventana y que cada una tiene un espectro dife-
rente, se expresara de forma general, tanto la senal en el dominio del tiempo, como
en el dominio de la frecuencia, asi:

DFT
wln] = W(f) Ecuacion 6
En laTabla 3 se presenta el efecto de muestreo de la senal x(t) con el tren de impul-
sos de duracion finita. Al final de todo este proceso, el espectro de la senal x(t) no

solamente se replica, sino que se distorsiona ligeramente, debido a la convolucion
en el dominio de la frecuencia entre (X(f) ® M(f)) con W(f).

Antes de transmitir la sehal muestreada, se aplica un filtro pasa-bajo, para obtener
Unicamente la réplica ubicada en el origen.

Tabla 3. Muestreo con tren de impulsos de duracion finita y su efecto en frecuencia.
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CAPITULO 2.

Notacion en el Mundo discreto

Después de abordar el puente entre el mundo analogo/continuo con el mundo
digital/discreto, nos introduciremos en la notacion que se utiliza en procesamiento
digital de senales.

Al finalizar el capitulo, deberas estar en capacidad de:

l. Expresar en el dominio Z una senal en tiempo discreto de duracion finita.

2. Convertir una ecuacion de entrada-salida en una funcién de transferencia

en el dominio Z.

Dibujar en diagramas de bloques un sistema FIR.

4. Identificar si un filtro digital es FIR o IIR a partir de la ecuacion de entra
da-salida, la respuesta al impulso, o la funcién de transferencia del sistema.

w

En muchos libros de Procesamiento Digital de senales encontraras como tema in-
faltable la Transformada Z (conocida como TZ) con su matematica, y ecuaciones, y
de pronto pensaras que es un tema muy dificil de abordar. Pues estas equivocado, la
TZ es una representacion muy amigable de las senales discretas, la cual nos ayuda a
modelar el comportamiento de un sistema discreto a través de su entrada y salida.
De una forma muy intuitiva vamos poco a poco a conocer en qué consiste la TZ y
como nos apoya en la representacion y diseno de los filtros digitales para senales
ID.

2.1. REPRESENTACION DE UNA SENAL DISCRETA
EN TERMINOS DE IMPULSOS DESPLAZADOS Y
NOTACION Z

Partamos de la senal x/n] de la Figura 14, la cual contiene 10 muestras comprendidas
en el rango [-4 5]. Recuerda que en el dominio discreto no hablamos de segundos,
sino de muestras, y que solamente existen valores de n enteros.
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Figura 14. Ejemplo de senal en el dominio discreto.

Esta senal la podemos dibujar en lenguaje Python, con el siguiente codigo:

import numpy as np

import matplotlib

import matplotlib.pyplot as plt

n = np.linspace(-4,5, 10)

print (n)

X = np.array([-2, -3, -4, 2, 3, 4, -1, -5, -1 51)
print (x)

plt.stem(n,x, use line collection="True”)

Podemos representar esta senal de varias formas, por ejemplo:

x(-4) =-2
x(-3)=-3
x(-2) =-4
x(-1)=2
x(0)=3
x(1)=4
x(2)=-1
x(3)=-5
x(4)=-1
x(5)=5

En términos de impulsos desplazados, asi:

x[n] =-28[n+4] - 38[n+3] - 48[n+2] + 26[n+1] + 38[n] + 48[n-1] - 6[n-2] - 5[n-3]
- 8[n-4] + 58[n-5]

Y de forma compacta, asi:
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x[n] = Z agdln - k]

4

Cona_,==-2,a;==-3az=-ha,, =2, qy=3, gy, =4 a0;=-1,a3=-5,a,=-1,
as = 5,

Supongamos que ahora transformamos la senal al dominio Z, es decir que:
TZ
x[n] - X(z) ) Ecuacion 7
Obteniendo para esta senal:
X(z)=-22"- 32° - 42° + 227+ 32°+ 4z - z?- 523 - 74+ 5z°°

{Qué similitudes encuentras entre x[n] con X(z)?

Resuelve esta pregunta antes de leer la respuesta que se encuentra a continuacion.

Podemos observar que:

a) Los impulsos que se encuentran ubicados a la izquierda del origen, su TZ co-
rresponde a una potencia positiva de z.

b) Los impulsos que se encuentran ubicados a la derecha del origen, su TZ co-
rresponde a una potencia negativa de z.

) Las amplitudes y signos de los impulsos se conservan.

d) La TZ del impulso ubicado en el origen corresponde a la amplitud del impulso
(dado que z°=1).

De forma intuitiva hemos llegado a la ecuacién que relaciona el dominio
discreto con el dominio z, asi:

X(z)=Y;.  x(k) z* Ecuacién 8

Donde x(k) es la amplitud de la senal para n=k, mientras que z es una variable com-
pleja con la cual se transforma del dominio del tiempo al dominio de la frecuencia.
Para senales discretas, podemos decir que si la Transformada de Fourier existe,
entonces su resultado coincide con la TZ de la sefal haciendo z=¢" es decir, para
|z|=1.

2.2. MODELANDO SISTEMAS DISCRETOS

Un sistema discreto es aquel en el que tanto la senal de entrada, como la de salida,
son discretas, es decir, que tienen un numero finito de muestras en un rango (de
tiempo) seleccionado. Estos sistemas se pueden representar por ecuaciones de en-
trada-salida, funciones de transferencia y diagramas de bloques.
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Supongamos que tenemos un sistema discreto con la siguiente ecuacion de entra-
da-salida:

_x[n]+x[n-1]+x[n-2]
Yinj=

3
Entonces, para calcular la salida en el tiempo discreto actual necesitamos conocer la
entrada en el mismo tiempo discreto actual, la entrada en el tiempo discreto ante-
rior,y la entrada en dos tiempos discretos anteriores. Posteriormente, se promedian
esos tres valores.

Para reescribir la ecuacion de entrada-salida en el dominio Z, es necesario que co-
nozcamos el efecto de un retardo de la sefial en el dominio temporal.

Especificamente,
si x[n] 3 X(z), = x[n-1] Uy X(z) Ecuacion 9
Y de forma general,
x[n-k] 5 2% X(z) Ecuacién 10
Entonces, x[n-2] %z2 X(z).

Aplicando el concepto anterior, reescribimos la ecuacién de entrada-salida del sis-
tema en el dominio Z, asi:

Y(z):X(Z) +7' )?(;(Z) +7° X(z)_

Factorizamos el término X(z),y lo pasamos a dividir al lado izquierdo de la ecuacion,
obteniendo:

Y(z) 1+7' +z°
X(z) 3
El resultado anterior se conoce como la Funcion de Transferencia del sistema, H(z).

Te preguntaras si existe alguna relacion entre H(z) y h[n]. La respuesta es que si.
Especificamente, H(z) es la TZ de la respuesta al impulso del sistema, es decir,

TZ
h[/n] = H(z)= % Ecuacion ||
Recuerda que el operador “=" significa “por definicién es igual a”.

Entonces, un sistema LTI (Lineal e Invariante en el Tiempo) se puede caracterizar
tanto por h[n] en el dominio del tiempo discreto, como por H(z) en el dominio de
Z.
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Finalmente, nos queda la representacion del sistema por diagrama de bloques. Para
ello, dibujamos nuestra ecuacion de entrada-salida, partiendo de x/nj, incluyendo
bloques de retardo (es decir bloques z''), sumadores, y amplificadores (o atenuado-
res), para finalmente obtener y/n].

Para el sistema que hemos utilizado en esta seccion, su diagrama de bloques es:

Figura 15. Ejemplo de diagrama de bloques de un sistema discreto.

En este caso, dado que tanto x[n], x[n-1], como x[n-2], estan ponderados por el
mismo escalar, entonces, el bloque de amplificacion se ubica después del sumador.
En otros casos en los que cada término tenga su propia ponderacion, es necesario
incluir un bloque de amplificacién por término de la ecuacién, previo al bloque su-
mador.

2.3. INTRODUCCION A LOS SISTEMAS DISCRETOS FIR vs IIR

En esta seccion nos centraremos en la diferencia que existe entre los filtros FIR y
los filtros IIR, de acuerdo con su respuesta al impulso.

Para ello, vamos a utilizar cuatro casos.
Caso I:

Nuestro sistema discreto tiene la siguiente relacién entrada-salida:

¥[n] = Z agx[n— k]

km=3
Donde a_k es un escalar, y k esta comprendida entre [-2 2]. Este sistema contiene
cinco términos, los cuales son x[n + 2], x[n + 1], x[n], x[n - 1] yx[n- 2] .

Vamos a reescribir la ecuacion en el dominio Z, asi:

z
¥iz) = a 2z kX2
lc-zz
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Y ahora pasamos a dividir X(z) a la parte izquierda de la ecuacién, obteniendo:

Y (z :

Expandamos los términos de la funcidn de transferencia, asi:

Hiz)=a_z*+a_ 7z ' + apz" + a2~ + azz7?

iQué senal en el dominio del tiempo discreto tiene como transformada Z el valor
de H(z) que acabamos de encontrar?

La respuesta es,

hin] =a_s8[n+ 2] + a_;8[n + 1] + agf[n] + a,8[n = 1] + a,f[n = 2]

Teniendo en cuenta que la cantidad de impulsos es finita, este sistema es FIR (Finite
Impulse Response). Adicionalmente, es simétrico (espejo) respecto al origen y no
causal. Por lo cual, la salida depende de la senal de entrada en valores futuros, y no
se puede trabajar en tiempo real.

Caso 2:

La relacion entrada-salida del sistema, es:

4

y¥ln] = Zukx[rl .1

k=0

Donde g, es un escalar, para los valores de k comprendidos entre [0 4]]. Este
sistema, al igual que el del Caso 1, contiene cinco-términos (pero ahora desde x[n]
hasta x[n-4]).

En el dominio Z, la ecuacién queda expresada de la siguiente forma:

a

¥iz) = Z:i*z Ex(z)

ksl
Y su funcion de transferencia, asi:

-

H(z) = Z:e,_.r'"‘ = 02"+ E  Fasr Tt tagz T +agat

k=y

En el dominio del tiempo, la respuesta al impulso es:
h/n]=a,8[n] +a; 6[n-1]+a,8[n-2]+a;6[n-3]+a,8[n-4]

De forma similar al Caso |, el sistema es FIR. No obstante, para este ejemplo la res-
puesta al impulso no esta centrada en el origen, sino que inicia en n=0. Entonces, es
un sistema causal y la salida del sistema se puede calcular en tiempo real.



PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 35'

Caso 3:

En este tercer caso, la relacion entrada-salida del sistema, es:

=

¥[n] = le:: — k]

k=)
A diferencia de los ejemplos anteriores, la cantidad de términos a la derecha de la

igualdad no es finita. Tenemos x[n], X[n-1], X[n-2], y asi sucesivamente hasta x[n-<].

En el dominio Z, la ecuacion queda asi:

Ll

¥iz) = Zz"‘x{z)

k=0

Y su funcion de transferencia, es:
”‘”=zz ey AL T A L T
k=i

En el dominio del tiempo, la respuesta al impulso es:
h[n] = é[n] + 6[n - 1] + &[n - 2]+---+5[n - 0]

Como la cantidad de impulsos en hfn] es infinita, este sistema es |IR (Infinite Impulse
Response). Por otro lado, como todos los impulsos se ubican a la derecha del origen
(o en el origen), entonces el sistema es causal. Teniendo en cuenta que el diagrama
de bloques requeriria de un niimero infinito de términos de retardo y de multipli-
cadores (si cada impulso tuviese una amplitud diferente), entonces, es comun que se
reescriba el sistema, como se expresa en el siguiente caso.

Caso 4:
La relacion entrada-salida del sistema se define por la ecuacion:

y[n] =x[n] +y[n-1]

Para obtener la senal de salida, es necesario conocer la senal de entrada en el mismo
instante de tiempo discreto, y la sefal de salida un instante anterior.

Este sistema es el mismo presentado en el Caso 3, como verificaremos a continua-
cion.

Partiendo de,
y[n]=x[n] +x[n-1] +x[n - 2] + x[n - 3] ++--+ x[n-0]
Al retardar en una posicion todos los términos de la ecuacién anterior, tendremos:

y[n-1]=x[n-1] +x[n - 2] +x[n - 3] + x[n - 4] +---+x[n - 0]
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Por lo cual, podremos re-escribir y[n] asi:
y[n]=x[n] +x[n-1]+x[n-2]+x[n-3]+-+x[n-0] =x[n] +y[n-1]
yln-1J

Entonces, hemos verificado que nuestro sistema del Caso 4 es el mismo sistema del
Caso 3.Por lo tanto, es IR y causal.

Por otro lado, en el dominio Z obtenemos que:
Y(z) = X(z)+z 1 Y(z)
Y reordenando el resultado anterior:
Y(z) - 21 Y(z) = X(2),
Y(z){1-z1} =X(z)

Llegamos a la funcion de transferencia del sistema:

Y(z) _ _ 1
X(z) - H(z) 1-z71

De forma general, si en la ecuacion de entrada-salida existe algun término a la dere-
cha de la ecuacioén de la forma y[n-k], para k entero positivo o negativo, entonces el
sistema es lIR.También es IR si se necesita conocer infinitos valores de la senal de
entrada, de la forma x/n-k]. Por otro lado, en términos de causalidad, si es necesario
conocer valores pasados y/o presentes de la entrada y/o salida, entonces el sistema
es causal; en caso contrario es no causal. Por lo cual, al unir los conceptos anterio-
res, tenemos que el sistema y[n] = 0.9x[n] + 0.1y[n - 2] es IIR causal, mientras que,
el sistema y/n] = 0.9x[n] + 0.1y[n + 2] es |IR no causal.

Adicionalmente, en términos de la funcion de transferencia H(z), si solamente tiene
un polinomio en el numerador (dependiente de z) y el nimero de términos es finito,
entonces el filtro es FIR. En caso contrario, el filtro es lIR.Si los polinomios solamen-
te tienen términos de z negativos, el filtro es causal; en caso contrario, es no causal.
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CAPITULO 3.

Mis primeros filrros digitales

Sé que en este punto del libro ya querras conocer ejemplos concretos de filtros
digitales y su efecto en senales | D (uni-dimensionales). Este Capitulo esta disenado
precisamente para que empieces a filtrar senales ID con filtros muy sencillos, co-
nocidos como filtros de promedio. Adicionalmente, conoceras su contraparte |IR
denominada Integrador Leaky.

Al finalizar el capitulo, deberas estar en capacidad de:

l. Disenar filtros pasa-bajos para senales |D, especificamente filtros de pro-

medio.

2. Filtrar senales I1D con filtros de promedio.

3. Explicar el comportamiento en frecuencia de los filtros de promedio, tanto
para valores de M par como impar.

4. Explicar las diferencias entre el filtro de promedio y el filtro Integrador
Leaky.

3.1. INTRODUCCION AL FILTRO DE PROMEDIO

Para entender en qué consiste el filtro de promedio, es necesario que previamente
recordemos como se caracteriza un sistema Lineal e Invariante en el Tiempo (LTI).
Especificamente, la salida del sistema, y[n], se encuentra calculando la convolucién
entre la senal de entrada, x[n], y la respuesta al impulso, h[n].

Es decir, si el sistema es LTI, se cumple que:

y[n] =x[n]@®h[n] = Z‘,’f:_w x[k]h[n - k] Ecuacion 12

Adicionalmente, es necesario recordar en qué consiste convolucionar x[n] con un
impulso ubicado en el origen, o desplazado, por ejemplo:

x[n] @ 8[n] = x[n],
xn] @ &n-1]=x[n-1],
xn] Q 6[n-2]=x[n-2],
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xn] @ 6[n+1]=x[n+1],
x[n] ® §[n+2]=x[n+2]
Entonces,
x[n] @ 6[n-kj=x[n-k] keZ Ecuacion 13

Si unimos el concepto de la Ecuacién 10 con el de la Ecuacion | I, podremos identi-
ficar que si y[n] = x[n - k], entonces su respuesta al impulso es h/n] = §[n - k].

De forma general,
M-1
siy[n] = Zkzox[n -kJ,

M-1
se tiene que h["FZk:o 6[n-KJ.

Ahora bien, si a la respuesta al impulso obtenida anteriormente la escalamos por el
factor 1M, obtenemos un filtro de promedio causal.

En resumen, un filtro de promedio (MAF: Moving Average Filter) es un sistema
LTI cuya respuesta al impulso contiene M impulsos consecutivos de amplitud
I/, que tipicamente inicia en el origen y termina en M-I, donde M-I corres-
ponde al orden del filtro,y M es la cantidad de términos (pasados, presente
y/o futuros) de la senal de entrada. El minimo valor de M=2 (es decir, filtro de
primer orden).

La respuesta al impulso de los filtros en promedio causales se define como:
M-1
h[n] = ﬁ Y o S[n-K] Ecuacién 14
Cuya funcion de transferencia, es:

H(Z]:—l\l/[ Z,Z;) zk Ecuacién 15

Graficamente, la respuesta al impulso de un filtro de promedio causal con M=11,
es:

Figura 16. Respuesta al impulso de un filtro de promedio causal, M=11I.
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La cual se puede dibujar con el siguiente codigo en Python:

import numpy as np

import matplotlib

import matplotlib.pyplot as plt

M=11

n = np.linspace(0,M-1,M)

x = np.ones ([M]) /M

plt.stem(n,x, use line collection="True”)

Este filtro de promedio también puede ser simétrico respecto al origen. En ese
caso, tipicamente se trabaja con M impar, cuya respuesta al impulso se define asi:
1 M1 .
h[n] = [ Lak=01-02) o[n - k] Ecuacion 16
Suponiendo que M=11, entonces:

h[n]:ll1 Y 8-k

k=-5

El cual corresponde a un filtro de promedio no causal (Figura 17). Entonces,
para calcular la salida del sistema es necesario conocer la entrada en el tiempo
actual, cinco valores pasados y cinco valores futuros del tiempo actual. Es decir,
y[n]=1/11{x[n] +x[n-1]+x[n-2] +x[n-3] +x[n-4] +x[n-5] +x[n+ 1] +x[n +
2] +x[n + 3] +x[n + 4] + x[n + 5]}.

Figura I7. Respuesta al impulso de un filtro de promedio no causal, M=11.

Aungque el orden del filtro de la Figura 16 es el mismo del de la Figura 17, la principal
diferencia radica en que en el primero se puede calcular la salida en tiempo real,
mientras que, en el segundo es necesario que previamente se haya almacenado (o
transmitido) la senal de entrada.

3.2. EFECTO DEL FILTRO DE PROMEDIO

El efecto del filtro de promedio en una senal |D consiste en suavizarla, es decir,
reducir los rizos que pueda contener la senal, manteniendo su forma. En otras pala-
bras, el filtro de promedio actia como un filtro pasa-bajos.
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Para ilustrar este efecto, primero crearemos una senal senoidal a la cual le adiciona-
remos ruido, y posteriormente la filtraremos con filtros de promedio de diferente
orden.

El cédigo en Python paso a paso es el siguiente:

Paso 1: importar librerias de trabajo

import numpy as np

import scipy as sp

import matplotlib.pyplot as plt
from scipy import signal

import math

Paso 2: generar una sefial sin ruido

step = 0.001

t = np.arange (0,2, step)

fs = 1 / step

print (fs)

frecuencia = 2 # Hz

frad = frecuencia * 2 * math.pi
x1 = np.sin(frad*t)

plt.plot (t,x1)

plt.title(‘'sefial sin ruido’)

La senal que se obtiene es una senal senoidal de 2 segundos de duracion, con
f=2Hz f,=1kHz,yamplitud en el rango [-1 1] (Ver Figura |8). Recorde-
mos que utilizamos plt.plot para que tenga apariencia de senal continua,
aunque realmente corresponde a una senal discreta.

Figura 18.Senal senoidal sin ruido.

Paso 3: generar ruido aleatorio

samples = len(x1)
An= 0.5
noise = An*np.random.rand (samples) - An/2

plt.plot (t,noise)
plt.title(‘Ruido’)

En este paso se obtiene una senal que corresponde a ruido de 2 segundos de du-
racion, cuya amplitud se encuentra en el rango [-0.25 0.25)]. (Ver Figura 19).
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Figura 19.Ruido aleatorio.

Paso 4: sumar la sefial senoidal con la sefial de ruido

xnoise = x1 + noise
plt.plot (t,xnoise)

plt.title(‘'Sefial con ruido’)

La nueva senal (Figura 20) corresponde a una senal senoidal con ruido de fondo,
conservando la frecuencia fundamental de la senal de la Figura 18. No obstante, la
amplitud esta ahora en el rango [-1.25 1.25)].

Figura 20. Senal senoidal con ruido de fondo.

Paso 5: aplicacién de filtro de promedio (M=7, 11, y 111)

a =1

M =7

b7 = np.ones ([M]) /M

y7 = signal.filtfilt (b7, a, =xnoise)
M =11

bll = np.ones([M])/M

yll = signal.filtfilt (bll, a, xnoise)
M =111

blll = np.ones([M])/M
y1l1ll = signal.filtfilt (b111, a, =xnoise)

# Se grafican los resultados
plt.rcParams|[“figure.figsize”] = (20,10)
plt.subplot(2,2,1)

plt.plot (t,xnoise)

plt.title(‘a)’)

plt.subplot(2,2,2)

plt.plot(t,y7)




| 42| Dora Maria Ballesteros, Diego Renza

plt.title (‘b))
plt.subplot (2,2, 3)
plt.plot(t,yll)
plt.title(‘c)’)
plt.subplot(2,2,4)
plt.plot(t,yl1ll)
plt.title('d)’)
plt.show ()

Se utiliza la instruccion filtfilt de la libreria signal para aplicar el filtro previamente
disefado (con np.ones ( [M] ) /M) a la senal xnoise. Esta instruccion permite filtrar
senales ID con filtros FIR o IRR. En el caso de filtros FIR, como corresponde al
filtro de promedio, es necesario trabajar con a = 1.

Como resultado del cédigo anterior se obtienen cuatro sub-graficas, las cuales se
presentan en la Figura 21.

Figura 21.Resultado de filtrar una senal senoidal ruidosa con un filtro de promedio: a) sefal
de entrada, b) senal filtrada con M=7, c) sefal filtrada con M=11, d) sefal filtrada con M=111.

Al comparar los resultados obtenidos con filtros de promedio con diferentes M, se
aprecia que a medida que M aumenta el efecto de suavizado es mayor, es decir, se
reduce en mayor medida el rizado (ruido de fondo) de la senal. No obstante, como
veremos en la siguiente seccion, no se recomienda aumentar abruptamente el orden
del filtro, porque se puede producir un efecto no deseado al eliminar componentes
de frecuencia de la senal que son importantes. Se sugiere que el estudiante utilice
un M alto (por ejemplo, M=501), y obtenga sus propias conclusiones del efecto del
filtro sobre la senal.

3.3. RESPUESTA EN FRECUENCIA DEL FILTRO DE PROMEDIO

En esta seccion nos centraremos en conocer y comprender el impacto que tiene
el valor de M en la respuesta en frecuencia del filtro de promedio. El filtro MAF es
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un filtro pasa-bajos cuya frecuencia de corte disminuye a medida que aumenta el
valor de M. A diferencia de los filtros analogos, en los que la frecuencia de corte la
expresamos (tipicamente) en Hz, en el caso de los filtros digitales, esta frecuencia
se encuentra normalizada en el rango [0 1) ], por ejemplo 0.2, con unidades
[radmuestra]. El rango total de la respuesta en frecuencia del filtro digital (bilateral)
corresponde a [-m  m)].

Como primer paso, vamos a reescribir la respuesta al impulso del filtro de prome-
dio, de la forma:

h/n] =u[n] - ufn-M] Ecuacion |7
M

donde M - 1 es el orden del filtro. Este resultado es equivalente al obtenido en la
Ecuacion 14.

Como segundo paso, vamos a calcular la DTFT (Transformada de Fourier de Tiem-
po Discreto) de h[n], es decir:

Obteniendo que,

Cuando graficamos la magnitud de la respuesta en frecuencia del filtro de promedio,
encontramos que presenta un comportamiento especial, que lo podemos resumir
como:

*  Todos los filtros de promedio tienen un lobulo principal alrededor de w = 0,
y varios l6bulos secundarios que inician en -1 y terminan en .

*  La amplitud de los I6bulos secundarios disminuye a medida que se alejan de
w=0. Cada lobulo secundario es mas pequeno que su antecesor (entre [0
m]) y existe un efecto espejo con las frecuencias negativas.

*  La cantidad de I6bulos en el rango [-m 7] es igual a M-1. Hay un l6bulo
principal y M-2 |6bulos secundarios.

*  Si el filtro tiene un M par, el primer “cruce por cero” y el ultimo “cruce por
cero” ocurren en las frecuencias -7 y 1, respectivamente. En caso contrario, si
M es impar, en esas frecuencias no existira cruce por cero.

*  En todos los casos, los cruces por cero se encuentran ubicados en 2k/M. El
rango de kes [1 (M-1))2] para M impar,y [I MZ2] para M par.
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Nota: se dibuja la magnitud de la respuesta en frecuencia del filtro, por lo cual no
tendra valores negativos y formalmente no existiran los “cruces por cero”. Sin
embargo, si existen valores en los cuales la amplitud ha disminuido, llega a cero, y
vuelve a aumentar, los consideraremos como “cruces por cero”.

Por ejemplo, para M = 7, el filtro de promedio tiene un Iébulo principal y cinco 16-
bulos secundarios, de los cuales dos I6bulos y medio (secundarios) se encuentran
en las frecuencias positivas (Ver Figura 22). Dado que M es impar, el dltimo cruce
por cero en las frecuencias positivas (al igual que el primer cruce por cero en las
frecuencias negativas) no ocurre en w=Tr.

Figura 22. Magnitud de la respuesta en frecuencia de un filtro de promedio, M=7.

Para obtener la grafica de la magnitud de la respuesta en frecuencia del filtro MAF
utilizamos el siguiente codigo en Python:

from scipy import signal

import numpy as np

from scipy import signal

import matplotlib.pyplot as plt
import math

M =7

M7 = np.ones ([M])/M

a =1

wl, vl = signal.fregz (M7, a)
plt.rcParams|[“figure.figsize”] = (14,8)
ax = plt.subplot(2, 1, 1)

plt.plot (wl, np.abs(vl))

plt.title (‘Respuesta en frecuencia filtro digital de promedio, M=7")

La instruccion signal. freqgz de lalibreria de scipy de Python permite graficar la
respuesta en frecuencia de filtros digitales, tanto FIR como IIR. Las entradas de esta
instrucciéon corresponden a los coeficientes de los polinomios tanto del numerador
como del denominador de la funcion de transferencia del filtro digital. En el caso
del filtro MAF, por ser un filtro FIR, el denominador es una constante igual a uno, y
entonces, a la entrada “a” de la instrucciéon signal . freqgz le asignamos el valor
de uno. El resultado corresponde al vector de frecuencias normalizadas, w1, y al
vector de amplitudes, v1. Con la instruccion np.abs (v1) se calcula la magnitud
de la respuesta en frecuencia del filtro digital.
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Podemos obtener cada uno de los cruces por cero del filtro de promedio, con el
siguiente codigo en lenguaje Python:

M=7

# k=1, entonces

k=1

wcl= 2*math.pi/M

print (“frecuencia cruce por cero 1:”, wcl)

# k=2, entonces

k=2
wc2= 2*math.pi*k/M
print (“frecuencia cruce por cero 2:”, wc2)

# k=3, entonces

k=3

wc3= 2*math.pi*k/M

print (“frecuencia cruce por cero 3:”, wc3)

y obtendriamos:

frecuencia cruce por cero 1l: 0.8975979010256552
frecuencia cruce por cero 2: 1.7951958020513104
frecuencia cruce por cero 3: 2.6927937030769655

Cuando el valor de M es alto, se recomienda utilizar una estructura anidada (por
ejemplo, ciclo for) para encontrar los cruces por cero del filtro digital, asi:

M =7
for k in range(1l,int ((M-1)/2)+1):
wc= 2*3.14*k/M
print (“frecuencia de cruce por cero”,k, “:”, wc)

Supongamos ahora que nuestro filtro trabaja con M = 31, jcuantos Iébulos secun-
darios tendra? La respuesta es 29 I6bulos secundarios, por lo que, de forma similar
al caso anterior no se encontraran cruces por cero en -7, ni en 7. La grafica se
presenta en la Figura 23.

Figura 23. Magnitud de la respuesta en frecuencia de un filtro de promedio, M=31.

Independiente del orden del filtro, tendremos que en w = 0 la amplitud es igual a
uno. Se aprecia que de forma similar a la grafica de la Figura 22, el dltimo l6bulo
queda a “la mitad”, es decir, no llega a cero.
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Los cruces por cero los obtenemos con el siguiente codigo en Python:

M = 31
for k in range(1l,int ((M-1)/2)+1):
we= 2*3.14*k/M

print (“frecuencia de cruce por cero”,k, “:”, wc)
frecuencia de cruce por cero 1: 0.20258064516129032
frecuencia de cruce por cero 2: 0.40516129032258064
frecuencia de cruce por cero 3: 0.607741935483871
frecuencia de cruce por cero 4: 0.8103225806451613
frecuencia de cruce por cero 5: 1.0129032258064516
frecuencia de cruce por cero 6: 1.215483870967742
frecuencia de cruce por cero 7: 1.4180645161290324
frecuencia de cruce por cero 8: 1.6206451612903225
frecuencia de cruce por cero 9: 1.823225806451613
frecuencia de cruce por cero 10: 2.0258064516129033
frecuencia de cruce por cero 11: 2.2283870967741937
frecuencia de cruce por cero 12: 2.430967741935484
frecuencia de cruce por cero 13: 2.6335483870967744
frecuencia de cruce por cero 14: 2.836129032258065
frecuencia de cruce por cero 15: 3.0387096774193547

Como tercer ejemplo, utilizaremos un filtro con M par. Especificamente, si M = 8,
obtendremos una grifica que contiene tres I6bulos secundarios en las frecuencias
positivas, y el Gltimo cruce por cero ocurre exactamente en w = Tt (Ver Figura 24).

Figura 24. Magnitud de la respuesta en frecuencia de un filtro de promedio, M=8.

La respuesta en frecuencia se obtiene con el siguiente cédigo en Python:

from scipy import signal

M= 8

M8 = np.ones ([M])/M

a =1

wl, vl = signal.freqgz (M8, a)
plt.rcParams[“figure.figsize”] = (14,8)
ax = plt.subplot(2, 1, 1)
plt.plot(wl, np.abs(vl))

Y los cruces por cero, asi:

M = 8
for k in range(l,int ((M)/2)+1):
wc= 2*3.14*k/M
print (“frecuencia de cruce por cero”,k,”:”, wc)
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frecuencia de cruce por cero 1: 0.785
frecuencia de cruce por cero 2: 1.57
frecuencia de cruce por cero 3: 2.355
frecuencia de cruce por cero 4: 3.14

Finalmente, si comparamos la primera frecuencia de cruce por cero de los filtros
de promedio con M =7, M = 8,y M = 31, podemos concluir que a medida que M
aumenta, la frecuencia del primer cruce por cero disminuye (es decir, cuando utili-
zamos un orden de filtro alto, la frecuencia de corte es baja). No obstante, indepen-
diente del valor de M, el filtro de promedio se comporta como un filtro pasa-bajos.

3.4. FILTRO INTEGRADOR LEAKY

Este filtro tiene un comportamiento parecido al filtro de promedio (efecto pasa-ba-
jo) cuando M = 100. La ecuacion de entrada-salida se define como:

y[n] =Ay[n-1]+ (1-A)x[n] Ecuacién 20

Cuya relacion de A y M esta dada por:

yoM-1

7 Ecuacion 21

De tal forma que si M = 100, entonces A =99/100 = 0.99.
Por lo que, para este caso especifico la salida es:
y[n] =0.99y[n - 1] + 0.01x[n]

Esto significa que, para obtener la salida en el momento actual se conserva en
gran parte la salida del momento anterior, y solamente una pequenisima parte de
la entrada en el momento actual. Adicionalmente, si la entrada solo existe en un
momento especifico (ej. x[n] = §[n]), la salida sera distinta de cero a partir de ese
momento en adelante.

Veamos precisamente cual es la respuesta al impulso del filtro Leaky.
Reescribamos la ecuacién 18 de la siguiente forma:
y[n] =Ay[n - 1] + (1-1)6[n] Ecuacion 22

Y supongamos que el sistema inicia en n = 0, es decir que antes de ese momento
tanto la entrada como la salida eran de amplitud igual a cero.

Entonces,
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° y(0) = 0.99y(-1) + 0.018[n], que es equivalente a y(0) = 0.01, dado que
y(-1) =0,y x(0) = 0.01.

° y(1) =0.99y(0), que es equivalentea y(1) = 0.99 * 0.01, dado que x(1) = 0.

° y(2) = 0.99y(1), que es equivalente a y(2) = 0.99 * 0.99 * 0.01, dado que
x(2)=0.

. y(3) = 0.99y(2), que es equivalente a y(3) = 0.99 * 0.99 * 0.99 = 0.01,
dado que x(3) = 0.

° ... y(k)=0.99y(k-1), que es equivalente a y(k) = 0.99"% 0.01.
De forma general, la respuesta al impulso del Filtro Leaky se expresa como:
h[n]=2A"(1-2) paran=0 Ecuacion 23

Examinando la ecuacion 23 podemos concluir que este filtro es de respuesta al
impulso infinita, dado que, a partir de n = 0, las amplitudes de h[n] seran distintas
de cero.

A continuacion, dibujaremos la ecuacion de entrada-salida, utilizando un diagrama
de bloques:

Figura 25. Diagrama de bloques filtro Leaky.

Para obtener la salida con este tipo de filtros, se necesita una unidad de retardo, un
sumador y dos multiplicadores, independiente de M.

Ahora bien, dibujemos el diagrama de bloques para un filtro de promedio con
M =100,y comparemos el uso de recursos.

Figura 26. Diagrama de bloques filtro de promedio, M=100.
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En este caso, se necesitan 99 unidades de retardo, un sumador y un multiplicador.
Es claro que la cantidad de unidades de retardo es significativamente mayor que en
el filtro Leaky.

Lo que significa que si se quiere implementar un filtro que promedie el comporta-
miento de la sefal de entrada en las Ultimas 100 o 1000 muestras (por ejemplo), es
mas eficiente a nivel computacional utilizar una estructura como la de la Figura 25,
que como de la Figura 26.

3.5. GENERALIDADES DE LOS FILTROS DIGITALES

Iniciaremos este subcapitulo de generalidades de los filtros digitales, clasificandolos
en relacion con su respuesta al impulso. Primero en términos de duracion, y segun-
do en términos de computo. Posteriormente, revisaremos la definicion de estabili-
dad de los filtros digitales, tomando como ejemplo el filtro de promedio y el Leaky.

Clasificacion de los filtros digitales:

Si la respuesta al impulso del filtro es de duracion finita, decimos que es FIR.
En caso contrario, decimos que el filtro es lIR.

Por otro lado, un filtro puede ser causal o no causal. Un filtro es causal si su
salida depende de la entrada en el mismo valor de tiempo (discreto) y/o de
valores pasados de tiempo.Y es no causal, si la salida depende de valores futu-
ros de la senal de entrada. Un filtro causal se puede ejecutar en tiempo real,
es decir, que a medida que ingresa la entrada al sistema se calcula su salida.
Mientras que, en filtros no causales, necesitamos conocer toda la senal de
entrada para calcular la salida del sistema.

Combinando las dos clasificaciones anteriores, se pueden tener filtros FIR
causales, FIR no causales, IIR causales e IIR no causales. Puedes revisar ejem-
plos de cada caso en el Capitulo 2.3.

Estabilidad de los filtros digitales:

Un filtro es estable si la salida del filtro es acotada para entradas acotadas. Es
decir, si se cumple con la siguiente condicién:

Sea |x[n]| <M, |y[n]| < P, para M,P < co. Entonces anh[n]l <L para L<c.

De tal forma que, TODOS los filtros FIR son estables. Por lo que, todos los filtros
de promedio son estables.

Vamos ahora a revisar la estabilidad en los filtros Leaky. Recordemos que su res-
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puesta al impulso es de la forma h[n] = A" (1 - A) para n = 0. Entonces es necesario
evaluar dos posibles escenarios, cuando |A| < 1y cuando || = 1.

Escenario I: |A| <1

En este caso, Z:):_m|h[n]| =|1-2] Z:loo [A"] = |1 - A|{A%+AT 427427442} es un
valor finito, dado que cada vez se suma un término mas pequeno que el anterior.

Por ejemplo, supongamos que A = 0.5, entonces |1 - A| Zi_mllﬂ =10.5{0.5°+ 0.5"

+0.5%+ 0.53+---+0.5°°} =05+025+ 0'1225 +0.0625+ _ % Entonces, el filtro IR

es estable.

Escenario 2: |A| =2 1

En este caso, Z:):_m|h[n]| =|1-2| Z:o:w [A"] = |1 - A[{A%+AT A% 427+ 42} es un
valor infinito, dado que cada vez se suma un término mas grande que el anterior.
Por ejemplo, supongamos que A = 2, entonces |1 - A| Zi_w|/1"| = |-1{2%+ 2"+ 2%+

23+---+2°°} =1+2+4+8+ 16+ -+ -0 .Entonces, el filtro lIR es inestable.

En resumen, algunos filtros IR son estables, y otros son inestables. En el caso
del filtro Leaky, es estable siempre y cuando se cumpla que |A| < 1.
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CAPITULO 4.

Merodos de diseno de filrros FIR

En este cuarto capitulo del libro vamos a conocer y a aplicar varios métodos o téc-
nicas de diseno de filtros FIR. Partiremos de los filtros ideales y comprenderemos
la razéon por la cual no son realizables. Posteriormente, conoceremos el método
de muestreo en frecuencia, y finalizaremos con el método de ventaneo. De forma
simultanea abordaremos esta tematica desde el punto de vista tedrico, y a nivel de
simulacion el lenguaje de programacion Python.

Al finalizar el capitulo, deberas estar en capacidad de:

I Explicar la razon por la cual los filtros ideales no son realizables.

2. Explicar el fenémeno de Gibbs a partir del truncamiento de la respuesta a
impulso de un filtro ideal.

3. Disenar filtros (pasa-bajos, pasa-altos, pasa-banda) aplicando el método de
muestreo en frecuencia, apoyandose en Python para los calculos.

4. Disenar filtros (pasa-bajos, pasa-altos, pasa-banda) aplicando el método de
ventaneo, apoyandose en Python para los calculos.

5. Explicar el comportamiento de los ceros en filtros FIR disefiados por los
métodos de promedio y ventaneo.

4.1. FILTROS ANALOGOS IDEALES

Para abordar el concepto de filtros ideales, debemos primero repasar la clasifica-
cion de los filtros respecto a la respuesta en frecuencia. Los filtros se clasifican en:
pasa-bajos, pasa-altos, pasa-banda y rechaza-banda.

En el caso de los filtros pasa-bajos, la banda de paso inicia en los 0 [Hz] y termina
en la frecuencia de corte del filtro, denominada f.. O de forma equivalente, inicia
en 0 [radbeg] y termina en W, para Wc= 2nfc. A partir de la frecuencia de corte
inicia la banda de rechazo, en la cual el filtro idealmente atenta por completo esas
frecuencias de la senal de entrada. Por lo tanto, en el filtro ideal la ganancia (G) en
la banda de paso es constante (tipicamente G = 1),y en la banda de rechazo es cero.
En la frecuencia de corte se tiene una caida con pendiente infinita.
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La respuesta en frecuencia del filtro pasa-bajo ideal se presenta en la Figura 27.

Figura 27. Respuesta en frecuencia de un filtro andlogo pasa-bajo ideal.

En el caso del filtro pasa-alto ideal, la banda de rechazo inicia en 0 [Hz] y termina
en la frecuencia de corte. La banda de paso corresponde a las frecuencias mayores a
la fc.Tanto el filtro pasa-alto como el filtro pasa-bajo, tienen una sola banda de paso
y una sola banda de rechazo. La Figura 28 presenta la respuesta en frecuencia del

filtro pasa-altos ideal.

Figura 28. Respuesta en frecuencia de un filtro analogo pasa-alto ideal.

Los otros dos tipos de filtro son pasa-banda y rechaza-banda. El primero, tiene una
banda de paso y dos bandas de rechazo (Figura 29). El segundo, tiene dos bandas de
paso y una banda de rechazo (Figura 30). En ambos casos, se tienen dos frecuencias

de corte, denominadas fei y fe.

Figura 29. Respuesta en frecuencia de un filtro analogo pasa-banda ideal.
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Figura 30. Respuesta en frecuencia de un filtro analogo rechaza-banda ideal.

4.2. FILTROS DIGITALES IDEALES

En el caso de los filtros digitales, la respuesta en frecuencia bilateral la expresamos
en el rango [-m )] con unidades [rad/muestra], o en el rango [-1 1] con unidades
[ciclo/muestra].

El filtro digital pasa-bajo ideal se presenta en la Figura 34.

Figura 31.Respuesta en frecuencia del filtro digital pasa-bajo ideal, valores en [rad/muestra].

Matematicamente, se define como:
1 |o|<wc

H(el®) = con periodicidad de 2w Ecuacion 24
0 e.o.c.(en otro caso)

Las caracteristicas del filtro, son:
* Banda de paso completamente plana.
¢ Atenuacion infinita en la banda de rechazo.

* Fase cero (sin retraso).
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En el dominio del tiempo discreto, la respuesta al impulso del filtro (es decir, la
Transformada de Fourier Discreta Inversa: IDTFT), es igual a:

h[n]

La cual corresponde a una senal de duracién infinita por ambos lados del eje n, co-
nocida como senal sinc.

_ sin(wcn)
©mn

Ecuacion 25

Revisemos ahora la estabilidad de este filtro pasa-bajos ideal. Recordando la defini-
cion de estabilidad presentada anteriormente en este libro (Capitulo 3.5), se tiene
que el filtro es estable si y solo si:

Zn|h[n]| <L para L<«

Entonces, el filtro pasa-bajos ideal no es estable, independiente del valor de wc que
se seleccione, dado que la sumatoria de la magnitud de su respuesta al impulso no
es finita.

A partir del concepto anterior, el primer método de diseno de filtros FIR correspon-
de al truncamiento de su respuesta al impulso. De tal forma que, partiendo de un
filtro FIR ideal se selecciona un nimero finito de impulsos (a ambos lados del eje n
) para convertirlo en un filtro estable.

4.3. TRUNCAMIENTO DE LA RESPUESTA AL IMPULSO

Este método consiste en limitar la cantidad de muestras de la respuesta al impulso
del filtro. Se parte de un h[n] que tiene infinitos impulsos con amplitud distinta a
cero, y se llega a un h[n] que tiene un nimero de impulsos finitos, simétrico res-
pecto al origen.

Cuando se aplica truncamiento a h[n], se hace visible el fendmeno de Gibbs en la
respuesta en frecuencia del filtro, que consiste en la aparicion de pequehas on-
dulaciones tanto en la banda de paso como en la banda de rechazo del filtro. La
diferencia (error) entre la maxima amplitud del rizado en relacién con la amplitud
plana del filtro ideal es del 9%, aproximadamente. Este error aparecera en H(e* ),
independiente de la cantidad de muestras seleccionadas al truncar h[n].

Por ejemplo, supongamos que la senal sinc en el dominio del tiempo discreto de
duracién infinita la truncamos en el rango -5 < n < 5, cuyo espectro se presenta en
la Figura 32.
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Figura 32. Espectro por truncamiento de h[n] con -5sn<5.

Si la misma senal sinc la truncamos, pero ahora en el rango -20 < n < 20, obtendre-
mos el espectro de la Figura 33.

Figura 33. Espectro por truncamiento de h[n] con -20=n<20.

Como se aprecia en las figuras anteriores, cuando se realiza truncamiento de h[n] se
tiene un efecto de “rizado”, tanto en la banda de paso, como en la banda de rechazo.
Este rizado se va “compactando” a medida que la cantidad de muestras selecciona-
das de h[n] aumenta, pero no desaparece.

4.4. MUESTREO EN FRECUENCIA

Este método de diseno de filtros FIR consiste en muestrear la respuesta en frecuen-
cia de un filtro analogo ideal, y aplicar un conjunto de ecuaciones que nos permiten
obtener la respuesta al impulso del filtro digital. Existen dos grupos de ecuaciones
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dependiendo de si el filtro tiene una muestra en w = 0 (es decir, « = 0) o no (es
decir, @ = 1) /2). En el primer caso, se disenan filtros con M impar, mientras que, en
el segundo caso M es par.

Utilizaremos los siguientes ejemplos para ilustrar en qué consiste este método de
disefo de filtros FIR. Primero, para el caso de a = 0;y posteriormente, para a = | /2.

Ejemplo 1:

Partimos de un filtro pasa-bajo ideal con f; = 250 [Hz]. La senal de entrada la mues-
treamos con fc = 2000 [Hz] y el filtro analogo lo muestreamos con M = 21 (una de
sus muestras queda ubicada en la frecuencia f= 0 [Hz]). Para el diseno de este filtro,
utilizaremos las ecuaciones correspondientes a a = 0.

El valor de espaciamiento en frecuencia, Af, entre muestras consecutivas del filtro
analogo, se calcula con la siguiente ecuacién:

Que para este caso es Af=1000/10=100, es decir que, cada 100 Hz se toma una
muestra del espectro. Las muestras de amplitud distinta a cero se ubican en los si-
guientes valores de frecuencia {-200,-100,0,100,200} [Hz].Aunque la frecuencia
de corte deseada esta en 250 [Hz], con los valores de My f; seleccionados real-
mente se esta disenando un filtro con frecuencia de corte de 200 [HZz]. El filtro
muestreado se presenta en la siguiente figura.

Figura 34. Muestreo en frecuencia del filtro analogo, M=21.

A partir de esta grafica, se escribe H,, que corresponde con el filtro muestreado:

1 k=012

H.(k) = [[] k=345678910

Se debe tener en cuenta que solamente se definen los valores de k del eje de fre-
cuencias positivo (incluido el cero), dado que los otros valores son su espejo.

A partir de H; se obtiene G(k), utilizando la siguiente ecuacion:
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G(k) = (-1)xH: (k) Ecuacién 27

Realizando una alternancia en los signos de H; asi: signo positivo para los valores de
k pares; signo negativo para los valores de k impar.

Entonces, para este filtro se tiene que:

Finalmente, se calcula h[n] con la ecuacién (para a = 0.):

La cantidad maxima de términos cosenoidales de la ecuacion anterior es U = (M-
1)/2. Sin embargo, teniendo en cuenta que a partir de k =3 se tiene que H; (k) =0,
entonces solo existen los términos para k= 1y k = 2, es decir, dos términos cose-
noidales, quedando h[n] expresada asi:

y al reemplazar los valores de G(k), finalmente se obtiene la siguiente ecuacion de
h[n]:

Entonces, h[n] se obtiene en el rango [0  20], dado que M = 21.

Podemos utilizar el siguiente codigo en Python para obtener las 21 amplitudes de
los impulsos de h[n]:

import math

import numpy as np
M=21

GO=1

Gl=-1

G2=1

h= np.zeros (M)

pi = math.pi

cos = math.cos

for n in range (M) :
h[n]=1/M* (GO+2* ((Gl*cos (2*pi/M* (n+0.5))) +(G2*cos (4*pi/M* (n+0.5)))))
print (h)

Obteniendo el siguiente resultado:

[ 0.04445162 0.02119247 -0.01507826 -0.04761905 -0.05937998 -0.03943817
0.01259897 0.08580656 0.16110284 0.21731539 0.23809524 0.21731539
0.16110284 0.08580656 0.01259897 -0.03943817 -0.05937998 -0.04761905
-0.01507826 0.02119247 0.04445162]
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Se puede apreciar que el primer término de h[n] (es decir h[0]) es igual al Gltimo
término (es decir h(M-1)); el segundo término es igual al penultimo, y asi sucesi-
vamente. De forma general, siempre que se disene un filtro con este método, se
cumplira que:

h(0) = h(M-1)
h(1) = h(M-2)
h(2) = h(M-3)

Como en este ejemplo M es impar, entonces el término h((M - 1)/2) no tiene pareja.

Ahora, vamos a graficar la respuesta en frecuencia del filtro que hemos disenado.
Utilizaremos el siguiente cédigo en Python:

from scipy import signal

import matplotlib

import matplotlib.pyplot as plt

a=1 # se hace igual a 1 porque el filtro es FIR
wl, vl = signal.freqgz(h, a)
plt.rcParams[“igure.figsize”] = (14,8)
plt.plot(wl, np.abs(vl))

Figura 35. Magnitud de la respuesta en frecuencia método muestreo en frecuencia, M=21.

El siguiente paso consiste en encontrar a partir de la grafica y de forma teodrica la
frecuencia de corte del filtro digital. Recordemos que el valor maximo es 7 [rad/

muestra].

Para este método de disefio, la frecuencia de corte se encuentra en la amplitud en
la cual se tiene una ganancia de -3 dB en escala logaritmica (o de 0.707 en escala
lineal) del valor en estado estable (tipicamente es |). Entonces, de forma visual en-
contramos que la frecuencia de corte es de aproximadamente 0.7 [rad/muestra].
Podemos utilizar el siguiente c6digo en Python para determinar su valor exacto, asi:
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x = np.where (abs(vl) > 0.707)
wcd = np.max (x)*pi/len (wl)
print (wcd)

0.6994952392758523
Finalmente, este valor se normaliza en el rango [0 1], de la siguiente manera:

fcn = wed / pl # frecuencia de corte normalizada en el rango (0 1)
print (fcn)

0.22265625
Por otro lado, la frecuencia de corte normalizada tedrica se calcula como:

Donde k es el maximo valor para el cual H; es distinto de cero (o el valor minimo
para el cual H, es distinto de cero, si el filtro es pasa-altos).

En nuestro ejemplo k=2. De tal forma que,

El valor experimental es muy cercano el valor tedrico, es decir, el filtro disefiado
obtenido se aproxima en gran medida al filtro que queriamos disefar.

Ejemplo 2:

Partimos de un filtro pasa-bajo ideal con fc= 450 [Hz], fs= 1800 [Hz], y cantidad
de muestras M = 18. Sin embargo, como M es par, se tiene que a = 1/2, lo que sig-
nifica que no existe muestra en f= 0 [Hz], sino en f= Af/2 [Hz].

El valor de espaciamiento en frecuencia, Af, entre muestras consecutivas del filtro
analogo, se calcula con la siguiente ecuacioén:

Obteniendo Af=900/9 = 100 [Hz], cuyas muestras de valor distinto a cero se
ubican en {-450,-350,-250,-150,-50,50,150,250,350,450} [Hz]. El filtro mues-
treado se presenta en la siguiente figura.

Figura 36. Muestreo en frecuencia del filtro analogo, M=18.
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Como siguiente paso, escribiremos el valor de H, asi:

1 k=0,1,234
H, (k) = Iu PRl

Y obtenemos G(k) utilizando la ecuacion 27,

1 k=024
G{k]=[—1 k=1,3
0 k=5,678910

Y calculamos h[n], a partir de G(k). Se enfatiza que la ecvacion cuando M es par
se expresa en términos de senoidales, y no de cosenoidales como en el ejemplo
anterior.

La ecuacion general es:

La cantidad maxima de términos senoidales de la ecuacidn anterior es U 2%- 1, sin
embargo, teniendo en cuenta que a partir de k=5 se tiene que h,(k) = 0, solamente
se tendran en este ejemplo cinco términos correspondientes a k= 0,1,2,3 y 4.

Entonces, la respuesta al impulso del filtro se define, asi:

Y se pueden obtener sus valores con el siguiente codigo en Python:

import math
import numpy as np

M=18
G0=1
Gl=-1
G2=1
G3=-1
G4=1

h= np.zeros (M)
pi = math.pi
sin = math.sin

for n in range (M) :
h[n]=2/M* ((GO*sin (2*pi/M* (0.5)

(0 *(n+0.5)) )+ (Gl*sin (2*pi/M* (1+0.5) * (n+0.5))) +
(G2*sin (2*pi/M* (240.5) )

*(n+0.5)) ) +(G3*sin (2*pi/M* (3+0.5

(G4*sin (2*pi/M* (440.5)* (n+0.5))));

print (h)

Obteniendo como resultado,
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[ 0.04272059 0.02875767 -0.057602 -0.01177696 0.07856742 -0.01681924
-0.1235279 0.10732509 0.48829857 0.48829857 0.10732509 -0.1235279
-0.01681924 0.07856742 -0.01177696 -0.057602 0.02875767 0.04272059]

De forma similar a lo obtenido en el ejemplo 1, el primer valor de h[n] es igual al
ultimo valor, el segundo valor es igual al penultimo valor, y asi sucesivamente.A dife-
rencia del caso anterior, no existe un valor que quede sin pareja, dado que M es par.

Continuaremos, dibujando la respuesta en frecuencia del filtro, con el siguiente co-
digo en Python:

from scipy import signal
import matplotlib
import matplotlib.pyplot as plt

a=1
wl, vl = signal.freqgz(h, a)
plt.rcParams|[“figure.figsize”] = (14,8)

plt.plot(wl, np.abs(vl))

Obteniendo,

Figura 37. Magnitud de la respuesta en frecuencia método muestreo en frecuencia, M=18.

A partir de la figura anterior, se puede determinar que la frecuencia de corte del
filtro digital se encuentra alrededor de 1.7 [rad/muestra] (evaluando la frecuencia
cuya amplitud es 0.707).

Nos podemos apoyar en Python para encontrar su valor, con el siguiente codigo:

X = np.where(abs(vl) > 0.707)
wcd = np.max (x) *pi/len (wl)
print (wcd)

1.6689710972195777

Ahora, calculamos la frecuencia de corte normalizada del filtro digital, asi:

fecn = wed / pi # frecuencia de corte normalizada en el rango (0 1)
print (fcn)

0.53125
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Y el valor teorico, por medio de la ecuacion:
2 (2k+1)
Jov= 2
Obteniendo en este caso,

Ecuacion 32

2

fCN=18*%= 0.114.5=0.5

Como conclusién, hemos verificado que el filtro quedo disefado correctamente.

4.5. VENTANEO

Podemos decir que este método se inspird en el concepto de truncamiento de la
respuesta al impulso. Lo que se busca, es limitar la cantidad de impulsos de la sefal
sinc, para que el filtro sea realizable (es decir, que no requiera de una senal en tiem-
po discreto de duracion infinita por ambos lados del eje n), y, adicionalmente, sea
estable. Sin embargo, en este caso no se descartan los coeficientes que estén por
fuera del rango de la senal sinc seleccionado, sino que, se multiplica en el dominio
del tiempo discreto la sefal sinc por una ventana de duracién finita. El efecto en el
dominio de la frecuencia es el de la convolucion entre el espectro de la sefal sinc
(que corresponde al filtro ideal) y el espectro de la ventana.

Matematicamente, el concepto anterior lo expresamos asi:

Sea h[n] la respuesta al impulso del filtro ideal, y w[n] la ventana discreta de dura-
cion finita. Cada una de estas sefales tiene su correspondiente espectro, asi:

a1 2Z2L Hiw) Ecuacién 33
W[n]ﬂ W(w) Ecuacion 34

Donde DTFT corresponde a la Transformada de Fourier de Tiempo Discreto (Dis-
crete-Time Fourier Transform).

Entonces, se multiplica en el dominio del tiempo discreto la sefal h[n] de duracién
infinita con la sehal w[n] de duracion finita, obteniendo una respuesta al impulso de
duracién finita, la cual denominaremos h(n).

El espectro de h[n] lo denominaremos h(w), el cual se obtiene de convolucionar
los espectros de las senales h[n] y w[n], es decir,
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Donde ® es el operador de convolucién.

A continuacion, se presenta de forma grafica el proceso de ventaneo, en el dominio
del tiempo y de la frecuencia.

Figura 38. Diseno de filtros FIR utilizando el método de ventaneo.

Algo importante a resaltar, es que existen varios tipos de ventanas.Algunas son mas
suaves, otras tienen cambios bruscos de amplitud, unas son mas puntiagudas, otras
mas anchas. Cada tipo de ventana tiene su correspondiente espectro, por lo que, el
filtro resultante tendra caracteristicas diferentes. Por ejemplo, existen ventanas que
atenuan de forma significativa en frecuencias distantes a la frecuencia de corte, pero
que no atenlan muy bien en frecuencias cercanas a la frecuencia de corte. Otras
ventanas tienen un comportamiento casi homogéneo en la zona de rechazo, pero
con niveles de atenuaciéon menores que las primeras.

En Python, la libreria scipy tiene 23 tipos de ventanas® . Para disefarlas, se puede
utilizar la instruccion signal.get_window, o directamente con el nombre de la ventana.

A continuacion, se presenta el cédigo en Python para crear varios tipos de ventanas.

a) Ventana Boxcar (rectangular)

import matplotlib.pyplot as plt
from scipy import signal
M=50 # orden del filtro = M-1.

windowl = signal.boxcar (M)
from pylab import rcParams
rcParams [ ] =10, 6

plt.stem(windowl)

2 https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window
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b.)  Ventana Hamming

window2 = signal.hamming (M)
from pylab import rcParams
rcParams [ ‘figure.figsize’] = 10, ©

plt.stem(window2)

c) Ventana Blackman

window3 = signal.blackman (M)
from pylab import rcParams
rcParams [ ‘figure.figsize’] = 10, 6
plt.stem(window3)

d)  Ventana Hanning

window4 = signal.hann (M)
from pylab import rcParams
rcParams [ ‘figure.figsize’] = 10, 6

plt.stem(windowd)

e)  VentanaTriangular

windowb5 = signal.triang (M)
from pylab import rcParams
rcParams [ ‘figure.figsize’] = 10, ©

plt.stem(window))

d)  VentanaTukey

window6 = signal.windows.tukey (M)
from pylab import rcParams
rcParams|[ ‘figure.figsize’] = 10, ©

plt.stem(window6)

En la Figura 39 se presentan las seis ventanas disenadas, todas con el mismo orden
del filtro, M=50.

La primera ventana, correspondiente a boxcar, es una ventana cuyas muestras son
constantes e iguales a uno, de tal forma que, es equivalente a truncar la senal sinc
cuando se multiplica por esta ventana en el dominio del tiempo discreto. La quinta
ventana, triang, debe su nombre precisamente a la figura geométrica que generan sus
amplitudes. La ventana tukey se caracteriza porque tiene una zona creciente seguida
de una zona constante y posteriormente una zona decreciente. Las otras tres venta-
nas que se seleccionaron en este ejemplo son muy similares entre si, con un cambio
de amplitud suave (sin saltos abruptos).Tanto la ventana blackmann como la hanning
tienen su primera y dltima muestra de amplitud igual a cero, a diferencia de la ven-
tana hamming que inicia y termina con una amplitud mayor a cero.Adicionalmente,
de estas tres ventanas la mas “angosta” es la ventana blackman.
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Figura 39. Ejemplos de ventanas, M=50: a) boxcar, b) hamming, c) blackman, d) hanning, €)
triangular, f) tukey.

Ahora, compararemos la respuesta en frecuencia de las seis ventanas. Para ello, uti-
lizaremos el siguiente codigo en Python:

from scipy.fft import fft, fftshift

import numpy as np

plt.figure ()

window = windowl # se reemplaza para cada una de las ventanas dise-
fladas previamente

Al = fft(window, 2048) / (len(window)/2.0)

freql = np.linspace(-0.5, 0.5, len(Al))

freql = freql * 2

responsel = np.abs (fftshift (Al / abs(Al).max()))

responsel = 20 * np.logl0O (np.maximum(responsel, 1le-10))
from pylab import rcParams
rcParams [ ‘figure.figsize’] = 10, 6

N = len(freql)//2
plt.plot (freql [N+1:2*N], responsel[N+1:2*N])

Obteniendo los siguientes espectros:
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Figura 40. Respuesta en frecuencia para M=50 de las ventanas: a) boxcar, b) hamming, c)
blackman, d) hanning, e) triangular, f) tukey.

Como era de esperarse, los espectros obtenidos de las seis ventanas disenadas
difieren entre si. Empezaremos comentando el espectro de boxcar, el cual presenta
la menor atenuacion en la banda de rechazo, oscilando su ganancia entre -30 dB a
-60dB, mientras que otras ventanas como la blackman llegan a tener hasta -160 dB
de ganancia. En el caso de la ventana hamming la ganancia oscila entre -50dB y -90dB.

Como paso final, disenaremos el filtro FIR con el método de ventaneo. Para ello, de-
bemos seleccionar la ventana por la cual multiplicaremos en el dominio del tiempo
la senal sinc; mientras que, en el dominio de la frecuencia se realizara la convolucion
de los dos espectros. En Python utilizamos la instruccion signal.firwin de la
libreria scipy para el disefio del filtro FIR por el método de ventaneo.

Los filtros que diseharemos a continuacién son pasa-bajos. Utilizaremos fs= 8000 [Hz],
y entonces por Nyquist la maxima frecuencia de corte es fcmax = fs/2 = 4000[Hz]. Se-
leccionaremos como frecuencia de corte fc = 2000[Hz], obteniendo que fc = fcmax /2.
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Importe de librerias:

from scipy import signal

import matplotlib

import matplotlib.pyplot as plt
import numpy as np

import math

Parametros de diseno (M, frecuencia y tipo de filtro):

M=50 # el filtro es de orden M-1
£=2000
pass_zero=True # True corresponde a un filtro pasabajo.

Diseno del filtro FIR con la ventana boxcar y visualizacion de la respuesta en fre-
cuencia:

hl= signal.firwin(M, £, window='boxcar’, £s=8000, pass_zero=pass_
zZero)
wl, vl = signal.freqgz(hl, 1)

Diseno del filtro FIR con la ventana hamming y visualizacion de la respuesta en fre-
cuencia:

h2= signal.firwin(M, £, window=’hamming’, £s=8000, pass zero=pass |
Zero)

w2, v2 = signal.freqgz(h2, 1)

Diseno del filtro FIR con la ventana blackman y visualizacion de la respuesta en
frecuencia:

h3= signal.firwin (M, f, window='blackman’, £s=8000, pass zero=pass |
Zero)

w3, v3 = signal.freqgz (h3, 1)

Diseno del filtro FIR con la ventana hanning y visualizacién de la respuesta en fre-
cuencia:

h4= signal.firwin (M, £, window=’hann’, fs=8000, pass zero=pass_zero)

wd4, v4 = signal.freqz(h4, 1)

Diseno del filtro FIR con la ventana triangular y visualizacion de la respuesta en
frecuencia:

h5= signal.firwin(M, £, window=’triang’, £s=8000, pass zero=pass |
zero)

w5, v5 = signal.freqgz (h5, 1)
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Diseno del filtro FIR con la ventana tukey y visualizacion de la respuesta en frecuen-
cia:

h6= signal.firwin(M, £, 200, window=’tukey’, £s=8000)
w6, v6 = signal.freqgz (h6, 1)

Primero dibujaremos la respuesta al impulso de los filtros, h(n), (resultado de mul-
tiplicar en el dominio del tiempo la sefal sinc por la ventana), y posteriormente, la
respuesta en frecuencia del filtro disefado, H(w), (resultado de convolucionar en

el dominio de la frecuencia la respuesta en frecuencia de la ventana con la del filtro
ideal).

Figura 41. Respuesta al impulso, ﬁ(n), método de ventaneo, M=50: a) boxcar, b) hamming,
c) blackman, d) hanning, e) triangular, f) tukey.

Se utiliza el siguiente codigo para dibujar las seis respuestas al impulso de los filtros:

plt.stem(h) # h= hl, h2, .. ho.

Al comparar las grificas, se aprecia que las diferencias se ven mas marcadas en los

primeros y ultimos impulsos de h(n), es decir, en las amplitudes mas pequenas de
la senal sinc.

Posteriormente, dibujaremos la respuesta en frecuencia de los seis filtros FIR, utili-
zando escala logaritmica:



PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 69'

plt.plot(w, 20*np.logl0(np.abs(v))) # w= wl, w2, .. w6. v=vl, v2, .. v6.|

Y obtenemos los siguientes espectros:

Figura 42. Respuesta en frecuencia de filtros FIR disefados con ventanas (escala logaritmi-
ca), M=50: a) boxcar, b) hamming, c) blackman, d) hanning, e) triangular, f) tukey.

Como se observa, el comportamiento de la respuesta en frecuencia del filtro en la
banda de paso cambia de forma significativa entre las ventanas seleccionadas para su
diseno. Las mayores atenuaciones (ganancias alrededor de -100dB) se obtienen con
las ventanas hamming, blackman, y hanning.

Finalmente, visualizaremos la respuesta en frecuencia de los filtros, pero ahora en
escala lineal. El objetivo es poder determinar de forma grafica la frecuencia de corte
del filtro digital obtenido.

Para ello, utilizaremos la siguiente instruccién para cada filtro:

plt.plot(w, (np.abs(v))) # w= wl, w2, .. w6. v= vl, v2, .. V6.

Y obtenemos las siguientes graficas:
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Figura 43. Respuesta en frecuencia de filtros FIR disefiados con ventanas (escala lineal),
M=50: a) boxcar, b) hamming, c) blackman, d) hanning, e) triangular, f) tukey.

Podemos observar que tanto en la banda de paso como en la de rechazo, el filtro
que presenta mayores ondulaciones es boxcar (debido al fendmeno de Gibbs que
vimos previamente). En segundo lugar, se encuentra el filtro disefiado con la ventana
tukey. Los filtros con “mejor” comportamiento, de los evaluados en esta seccion,
son hamming, blackman y hanning. En el caso del filtro disefado con la ventana triang,
su respuesta no es tan “plana” en las bandas de paso y de rechazo.

Como paso final, calcularemos la frecuencia de corte del filtro digital y la compara-
remos con la frecuencia de corte tedrica. Como se menciono en el Capitulo 2, se
debe encontrar entre [0 7] (en unidades rad/muestra). Como este ejemplo utilizé
fc = femax /2, entonces la frecuencia de corte tedrica del filtro digital es de /2.

Con el siguiente cédigo en Python encontramos la frecuencia de corte experimen-

tal (wcq ) de los seis filtros FIR disenados con las ventanas boxcar, hamming, blackman,
hanning, triangular, y tukey.
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pi = math.pi
x = np.where(abs(v) > 0.707) # Para v= vl, v2, .. v6.
wcd = np.max (x) *pi/len(w) # Para w= wl, w2, .. w6.

print (wcd)

Y se obtienen los siguientes resultados:

Ventana | boxcar hamming | blackman | hanning triangular | tukey
Wed 1.5401 1.5155 1.5033 1.5094 1.5155 1.5401

Los cuales son cercanos al valor tedrico, correspondiente a |1.5707 [radfnuestra].

4.6. CEROS EN FILTROS FIR

Partiendo de la funcion de transferencia del filtro digital, H(z), que estudiamos en el
Capitulo 2 de este libro, tenemos que un filtro FIR se expresa de la siguiente forma:

Donde M -1 es el orden del filtro. Entonces, la cantidad de términos de H(z) dife-
rentes de cero es M. Esta funcion de transferencia también se puede escribir como
una multiplicatoria (en lugar de una sumatoria) de M -1 términos, a partir de la
factorizacion del polinomio de z, asi:

Por ejemplo, vamos a suponer que la funcidon de transferencia del filtro FIR es
H(z) =1- 2z + 2% entonces factorizamos el polinomio de segundo orden obte-
niendo dos términos, asi, H(z) = (1 - z1)(1 - z!). Cada uno de los términos repre-
senta las raices del numerador de la funcion de transferencia, y se conocen como
los ceros del filtro digital. Es decir, cada término se iguala a cero y se despeja z
para obtener los ceros del filtro.

Para este ejercicio, se tienen dos ceros en la misma posicion, ubicados en:
(1-zHY=0 | =zt o oz=1

Es decir,c;=1,¢,= 1.

Se resalta que en el caso de los filtros FIR, solamente se tienen raices
en el numerador, es decir, los filtros FIR son sistemas solo-ceros.

En el capitulo 5 se generalizara este concepto a filtros IIR.

A medida que avancemos en el libro conoceremos el “significado” de los ceros de
un filtro digital. Por ahora, graficaremos su posicién en el plano z, apoyandonos en
lenguaje de programacién Python.
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Partiremos con el filtro de promedio que estudiamos en el Capitulo 2 y seguiremos
con el método de ventaneo.

Grafica polos y ceros filtro de promedio:

Lo primero que vamos a realizar es definir el vector de amplitudes del filtro
de promedio utilizando np.ones. Posteriormente, calculamos los ceros (z),
polos (p) y ganancia (k), de la funcién de transferencia del filtro, por medio
de signal.tf2zpk.Finalmente, dibujamos el circulo unitario en el plano z
con plt.plot (np.cos (theta),np.sin(theta)),y ubicamos los ce-
ros con plt.scatter (np.real (z1),np.imag(zl) ). Se resalta que el
filtro de promedio no tiene polos, dado que es un filtro FIR. Este concepto se
explica con mayor detalle en el proximo capitulo.

El co6digo completo en Python se presenta a continuacion:

import matplotlib

import matplotlib.pyplot as plt
import numpy as np

from scipy import signal

import math

2 #M=2, 3, 4, 5.

np.ones (M) / (M)

z, p, k = signal.tf2zpk(b,1)
print(len(z))

theta = np.linspace(-math.pi,math.pi,201)
plt.rcParams[“igure.figsize”] = (7,7)
plt.plot (np.cos (theta),np.sin(theta))
plt.scatter (np.real(z),np.imag(z))
plt.show ()

M
b

Y se obtienen las siguientes graficas:

Figura 44. Grifica de polos y ceros filtro de promedio, para: a) M=2, b) M=3, c) M=4, d) M=5.
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De la figura anterior, se pueden enumerar las siguientes conclusiones:

*  Todos los ceros de un filtro de promedio se ubican sobre el circulo
unitario.

* La cantidad de ceros es igual a M - 1. Es decir, se tienen tantos
ceros como el orden del filtro.

* Cuando el valor de M - 1. es par, cada cero tiene su conjugado, es
decir, comparten el mismo valor de la parte real y con signo con-
trario en la parte imaginaria.

¢ Cuando el valor de M - 1. es impar, se tiene un cero en z = -1.

* Los ceros se concentran en la parte izquierda de la grafica, como
“alejandose” de z = -1

Grafica polos y ceros filtro diseiiado por el método de ventaneo:

Para este método de disefo, la grafica de polos y ceros es distinta a la obtenida con
el filtro de promedio. Se sugiere utilizar M par en filtros pasa-bajos, y M impar en
filtros pasa-altos.

Para filtro pasa-bajos y ventana hamming, utilizamos el siguiente cédigo en Python:

from scipy import signal

import matplotlib

import matplotlib.pyplot as plt

import numpy as np

import math

M=2 # hacer M = 2, 4, 6, 8

£1=2000

pass zero=True # Si es True corresponde a un filtro pasa-bajo.

hl= signal.firwin (M, fl, window=’hamming’, £fs=8000, pass zero=pass zero)
z1, pl, k1 = signal.tf2zpk(hl,1) N N
theta = np.linspace(-math.pi,math.pi, 201)
plt.rcParams[“figure.figsize”] = (7,7)
plt.plot(np.cos(theta),np.sin(theta))
plt.scatter(np.real(zl),np.imag(zl))

plt.show()
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Figura 45. Grafica de polos y ceros, filtro pasa-bajos disenado con la ventana hamming: a)
M=2,b) M=4, c) M=6,d) M=8.

En este caso, se obtienen ceros por fuera del circulo unitario, principalmente en va-
lores negativos de z, pero eventualmente también en valores positivos. No obstante,
se aprecia que uno de los ceros se encuentra en z = -1, dado que se disen6 un filtro
pasa-bajos.

A continuacién, vamos a graficar los polos y ceros, pero ahora de un filtro pasa-altos.

M=4

£1=2000

pass zero=False # Si es False a un filtro pasa alto

hl= signal.firwin (M, fl, window=’hamming’, £s=8000, pass_zero=pass_zero)
z1l, pl, k1 = signal.tf2zpk(hl, 1)

theta = np.linspace(-math.pi,math.pi,201)

plt.rcParams[“figure.figsize”] = (7,7)

plt.plot (np.cos(theta),np.sin(theta))

plt.scatter (np.real(zl),np.imag(zl))

plt.show()
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Figura 46. Grifica de polos y ceros, filtro pasa-altos disenado con la ventana hamming: a)
M=3,b) M=7,c) M=I1,d) M=15.

La principal diferencia en el comportamiento de la grafica de polos y ceros entre
filtros pasa-bajos y pasa-altos, es que en los Ultimos los ceros se concentran alrede-
dor de z =1 (ver Figura 46), mientras que en los primeros se concentran alrededor
de z = -1. Esta observacion es valida independiente del método de diseno del filtro
y/o de la ventana seleccionada.
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CAPITULO 5.

Merodos de diseno de filrros IIR

En este quinto capitulo del libro abordaremos el diseho de filtros de respuesta al
impulso infinita (IIR), a partir del diseno de filtros analogos y aplicando mapeo entre
el dominio Laplaciano y el dominio Z.

Al finalizar el capitulo, deberas estar en capacidad de:

I Encontrar la TZ de senales de duracion finita e infinita, asi como su region
de convergencia.

2. Disenar filtros digitales aplicando Transformada Bilineal, con ayuda de Python
3. Disenar filtros Butterworth digitales, con ayuda de Python.
4. Encontrar la relacién entre la frecuencia de corte del filtro analogo con Ia

frecuencia de corte del filtro digital (o frecuencia de resonancia, en el caso
de filtros pasa-banda de banda angosta).

5. Explicar el comportamiento de polos y ceros en filtros IIR.

6. Filtrar senales ID con filtros IIR.

Una diferencia importante en el disefio de filtros digitales FIR con los lIR radica
en que los segundos se disehan a partir de un mapeo entre el dominio Laplaciano
y el dominio Z. Teniendo en cuenta que la funcion de transferencia de los filtros
analogos contiene un polinomio en el denominador dependiente de s, entonces, los
filtros digitales obtenidos por el mapeo entre estos dos dominios contendran en su
funcidn de transferencia un polinomio en el denominador dependiente de z. Por lo
tanto, con esta técnica de diseno, siempre se obtendran filtros IIR.

En este capitulo repasaremos algunos conceptos basicos de la TZ y posteriormente
abordaremos dos ecuaciones de mapeo entre los dominios Laplaciano y z, una co-
rrespondiente a la aproximacion en derivadas, y la otra, a la Transformada Bilineal.
Aunque en la practica la aproximacion en derivadas es un método que no se utiliza
por las limitaciones que tiene, permite entender el concepto de mapeo entre ambos
dominios y facilita comprender en qué consiste la Transformada Bilineal. Por esa
razoén, la incluiremos en este capitulo.
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5.. CONCEPTOS BASICOS DELATZ

En el Capitulo 2.1 se presento una breve introduccién a la Transformada Z. En este
Capitulo abordaremos el concepto de Region de Convergencia (ROC) de 1aTZ de
la senal discreta, asi:

“La ROC es el conjunto de todos los valores de z para los cuales la TZ de
x[n] es finita, es decir, que X(z) converge a un valor”.

Si no se logra satisfacer la condicion anterior con ninglin valor de z, entonces se dice
que laTZ de la senal no existe.

A continuacién, aplicaremos el concepto de ROC a varios casos. Inicialmente para
sefales de duracion finita y posteriormente para senales de duracion infinita.

Caso |: senal de duracion finita causal.

Supongamos que x[n] = 6[n] + 26[n - 1] + §[n - 2]. Entonces, la TZ de la senal

es X(z) = z°+ 2z' + z2, 6 de forma equivalente, X(z) = 1 +%+%-

Ahora bien, ;existe algun valor o un conjunto de valores de z para los cuales
X(z) no sea finita? Especificamente, si z= 0 entonces X(z) = 1 +%+%2- —00,
es decir, X(z) no converge, y entonces ese valor queda por fuera de la ROC.

Por lo cual, la ROC de la senal se expresa asi:
ROC = todo plano z- {z = 0}.
Para z # 0 se tiene que X(2) es finita.
Caso 2: senal de duracion finita anti-causal

Utilizaremos la sefnal x[n] = §[n + 2] + 56[n + 1], cuya TZ es X(z) = z2+5z%.
Para este caso, cuando z = 0 se tiene que X(Z) es finita, y entonces hace parte
de su ROC. Analicemos entonces si para otro valor de z se tendria que X(z)
no es finita. Especificamente, si z = o0 se tiene que X(z) = 002+ 500° 00, por
lo cual se debe excluir este valor de la ROC, quedando expresada de la si-
guiente manera:

ROC = todo plano z - {z = o}.
Caso 3: senal de duracion infinita causal
Partiremos de la sefal
x[n] = a" u[n]

Para conocer su comportamiento, dibujaremos la sehal para algunos valores
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de n teniendo en cuenta que esta senal inicia en n = 0 y termina en n = o0.
En la Figura 47 se presenta un ejemplo de la senal para algunos valores de n
ya=1/2.

Figura 47. Gréfica de la sefal (1/2)" u[n].

De forma general,si 0 < a < 1 la senal es decreciente, pero si a> 0 es ento-
nes creciente. Si a es negativa, tendra un comportamiento oscilatorio (valores
positivos y negativos alternados).

El cédigo en Python para dibujar n muestras de la senal es:

import numpy as np

import matplotlib.pyplot as plt
a=0.5

n=>5
n= np.linspace (0, n-1, n)
X = a **n

plt.stem(n, x)

La TZ de esta senal es:
X(2) = a2’ + a'z! +a?z? + @73 + -+ a¥z

Teniendo en cuenta que la cantidad de términos de la expresién anterior es
infinita, nos apoyamos en la siguiente serie matematica:

1+A+A2+A3+-~-+A°°:-1%4- < |A]<1

De tal forma que, al comparar las dos ecuaciones anteriores encontramos
una similitud entre ellas cuando A=a/z. La ROC quedaria entonces como |o/
z| < 1, o de forma equivalente |z| > |«].

De tal forma que, podemos reescribir laTZ de la senal, asi:

Para el caso especifico de a = 0.5, se tiene que suTZ es:
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Por lo cual, la ROC de esta senal causal de duracién infinita es el exterior
de un circulo de radio a.

Caso 4:senal de duracion infinita anti-causal
Partiremos de la senal

x[n] = -B"u[-n-1]

Esta senal existe desde n= -00 hasta n = -1. Para los demas valores de n, su
amplitud es cero. La siguiente figura presenta su comportamiento para algu-
nos valores de n, y con f§ = 2.

Figura 48. Grifica de la senal -(2)*n u[-n-1].

Se debe tener en cuenta que el signo negativo esta por fuera de la potencia n,
de tal forma que toda la amplitud de la senal se invierte. Ahora bien, si 5> 1,
entonces se tiene una sehal que disminuye en amplitud a medida que se aleja
del origen en valores negativos de n.

El cédigo en Python para dibujar n muestras de la senal es:

import numpy as np
import matplotlib.pyplot as plt

a=2

n=4

n= np.linspace(-n, -1, n)
X = —-(a **n)

plt.stem(n, x)

La TZ de esta senal es:

X(Z) - -{ﬁ'121+ ﬁ-zzz +ﬁ—3z3 F oot ﬁ-ooZoO}
De forma similar al caso anterior, nos apoyamos en la siguiente serie mate-
matica:
1+A+A%+ A%+ -+ A®= 11_,4 - A<l

Pasando el valor de | al lado derecho de la ecuacion, tenemos que:

A+A2+A3+--'+A°°=-1—1A--1 - |A]<I
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Y resolviendo,

A+ A2+ A3 4ot A® = % N lA|<I
Finalmente, multiplicamos a ambos lados de la ecuacion por -1, obteniendo

que:

LA+ AR+ AR Ak A7 =A—f‘1 o |A|<I

La TZ de la sefal se parece a la serie anterior cuando A = z/B = f12.Y la ROC
quedaria como |fz| < 1, o de forma equivalente, |z| < |B].

Entonces, podemos reescribir la TZ de la senal, asi:
-1
X(z) = Bz
Biz-1
O de forma equivalente,

1 <
T < ROC:e<IB]

Para el caso especifico de § = 2, se tiene que suTZ es:

X(z)—l_;zl &  ROC:|z| <2

Entonces, la ROC de esta senal anti-causal de duracion infinita es el interior de
un circulo de radio .

Caso 5:senal de duracién infinita por ambos lados de n
Partiremos de la senal
x[n] = a" u[n] - f"u[-n-1]
Para x,[n] = a" u[n], y x,[n] = -f"u[-n - 1], es decir que, x[n] = x,[n] + x* [n].

Teniendo en cuenta lo presentado en el Caso 3 y Caso 4 de este Capitulo, se tiene
que:

1 1
X(2) = —
(2) 1-az' 1-pz!

Con ROC: |z| > |a| N |z| < |B]

De tal forma que,laTZ 3 & > a. En caso contrario, A.

5.2. APROXIMACION EN DERIVADAS

El concepto que vamos a aplicar en esta subseccién y la siguiente es el de mapeo.
Pero jqué significa exactamente mapear dos dominios? Segun Britannica?, la defini-

3 Disponible en: https://www.britannica.com/science/mapping
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cion de mapeo es “cualquier forma prescrita de asignar a cada objeto en un conjunto a
un objeto en particular en otro (o el mismo) conjunto”. Entonces, para nuestro caso, el
mapeo permite relacionar el dominio Laplaciano con el dominio z a través de una
funcion.

En el caso del método de aproximacion en derivadas, se mapea la funcion de trans-
ferencia H(s) con la funcion de transferencia H(z), correspondiente a la derivada. En
el dominio Laplaciano la funcion de transferencia de la derivada es H(s) = s, mien-
tras que en el dominio z es H(z) = (1 -z")/T, , donde T, corresponde al periodo
de muestreo del sistema (es decir, el espaciamiento entre muestras consecutivas,
sabiendo que T, = 1/f)).

La Figura 49 nos permite ilustrar el concepto de derivada. Supongamos que quere-

mos calcular la derivada de una senal discreta en un tiempo especifico n, denomina-

da m(n), la cual se define como el incremento en amplitud de la senal dividido en el

periodo de muestreo, T, de la forma:

x(n)-x(n-1)
Ts

Por ejemplo, para n = 7, tendremos que su derivada es m(7) = {x(7) - x(6)}/T, .

m(n) = Ecuacién 39

Entonces, si la salida del sistema es la derivada de la sefal de entrada, para todo valor
de n tendremos la siguiente ecuacion de entrada-salida:

_x[n]-x[n-1]
Ts

Ecuacion 40

Figura 49. Senal discreta: concepto de derivada.

Aplicando la TZ a cada uno de los términos de la ecuacién anterior y la propiedad
de desplazamiento de la TZ, tendremos que:

X(2) -z X(2) _X(z){1-z"}

Y(z) = E ion 41
(2) T T cuacio
De tal forma que la funcion de transferencia nos queda asi:

Y(z) _ {1 Z- 1}

X =H(z) = Ecuacién 42
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Relacionando las dos funciones de transferencia H(s) con la de H(Zz), obtenemos el
mapeo entre el dominio s y el dominio z:

Despejando z de la ecuacion anterior, obtenemos:

Finalmente, al reemplazar s = 7Q, obtendremos:

Entonces,

Donde Q corresponde a la frecuencia de corte del filtro analogo. Al variar Q en el
rango {-00, o} se obtiene una correspondencia en el plano z de un circulo de r =
0.5 y centro en z = 0.5. De tal forma que un filtro analogo estable (el cual tiene sus
polos en el semiplano izquierdo), se transforma en un filtro digital estable (el cual
tiene sus polos dentro del circulo unitario). La principal desventaja de este método
de diseno de filtros IR consiste en que la ubicacion de los polos en ese pequeno
circulo corresponde a frecuencias bajas. De tal forma que solamente se pueden

disefar filtros con valores de QT pequefos.

5.3. TRANSFORMADA BILINEAL

La Transformada Bilineal es una mejora del método de aproximacion en derivadas,
dado que se mapea todo el semi-plano izquierdo del dominio Laplaciano, aprove-
chando todo el interior del circulo unitario. Como consecuencia, se pueden disenar
filtros de cualquier frecuencia de corte, superando la limitacion que tenia el método
de aproximacién en derivadas.

La ecuacion que nos permite mapear ambos dominios es:

Con esta funcion de mapeo, todo el semiplano izquierdo en el dominio s se corres-
ponde con el interior del circulo unitario en el dominio z.

En el dominio Laplaciano, un filtro pasa bajo tiene un cero en s = 0. Cuando se
aplica la ecuacién 46, el cero del filtro digital queda ubicado en en z =-1.

Adicionalmente, la correspondencia entre la frecuencia de corte del filtro analogo
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(Qq) con la del filtro digital (w,) no es lineal, sino una relacion de tipo tangencial,
dado por la ecuacion:

A partir de la ecuacion anterior, podemos encontrar la frecuencia de corte (o de
resonancia) del filtro digital a partir de la del filtro analogo, asi:

Como siguiente paso, necesitamos recordar las funciones de transferencia de filtros
analogos. Trabajaremos con filtros de segundo orden.

Se aclara que las frecuencias de los filtros andlogos de las funciones de transferencia
de la tabla anterior estan en unidades de [rad/seg].

Con el siguiente ejemplo se ilustra el método de diseno de filtro lIR con la Transfor-
mada Bilineal, apoyado en Python.

Ejemplo I: filtro pasa-altos

Se quiere disenar un filtro digital utilizando Transformada Bilineal, a partir de un
filtro andlogo pasa-alto,con Q.= 100[Hz],¢ =1, y G = 1. La frecuencia de muestreo,
f»es 10 veces la frecuencia de corte del filtro analogo.

El primer paso consiste en convertir la frecuencia de corte que inicialmente esta en
[Hz] en unidades [rad/seg]. Posteriormente, escribir la funcion de transferencia en
el dominio analogo, teniendo en cuenta el tipo de filtro, asi:

1*s?
2+ (2*1*100* 2 *m)s + (100 * 2 * )2

H(s) =

A partir de H(s) se escribe el siguiente codigo en Python:
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mport numpy as np

from scipy import signal

import matplotlib.pyplot as plt
f = 100

frad = 2*3.14*f

amort = 1

G =1

nums=np.array([G, 0, 0])
dens=np.array([l, 2*amort*frad, frad*frad])
fs=10 *f

ws, hs = signal.freqgs (nums, dens)

Del codigo anterior, fes la frecuencia de corte del filtro analogo en unidades [Hz], frad
es la frecuencia de corte del filtro analogo en unidades [rad/seg], amort es el factor
de amortiguamiento,y G es la ganancia del filtro. Adicionalmente, nums es el vector del
polinomio del numerador de H(s), dens es el vector del polinomio del denominador
de H(s),y fs es la frecuencia de muestreo del sistema.Teniendo en cuenta que ambos
polinomios (numerador y denominador) son de segundo orden, entonces cada vector
contiene tres valores, el primero asociado a s? el segundo a s' y el tercero a s°.

Con la instruccién signal.freqs se calcula la respuesta en frecuencia del filtro analo-
go. La salida ws corresponde al vector de frecuencias; mientras que, hs es el vector
de amplitudes de H(s).

Para graficar la respuesta en frecuencia, escribimos el siguiente codigo:

plt.plot (ws, (np.abs(hs)), label=r’S$|H(s)|S$")
plt.legend()

plt.xlabel (‘Frecuencia [rad/seg]’)

plt.ylabel (‘Magnitud’)

plt.title(‘Respuesta en frecuencia del filtro andlogo’)
plt.grid()

Obteniendo la siguiente grafica:

Figura 50. Respuesta en frecuencia filtro analogo pasa-alto, Qc=2001 [radseg].

Como siguiente paso, convertimos H(s) en H(z), aplicando Transformada Bilineal.
Para ello, utilizamos la instruccion *signal.bilinear y posteriormente creamos el sis-
tema LTI con la instruccion signal.diti. A continuacién, con signal.freqz calculamos
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la respuesta en frecuencia del filtro digital (a partir de los vectores del numerador y
denominador de H(z)),y la graficamos.

filtz = signal.dlti(*signal.bilinear (nums, dens, fs))

wz, hz = signal.freqgz (filtz.num, filtz.den)
plt.plot(wz, (np.abs(hz)), label=r’S$|H(z)|$")
plt.legend()

plt.xlabel (‘Frecuencia normalizada [rad/muestral’)
plt.ylabel (‘Magnitud’)

plt.title(‘Respuesta en frecuencia del filtro digital’)
plt.grid()

Figura 51.Respuesta en frecuencia filtro digital pasa-alto, w = 0.6 [rad/muestra] ¢ = 1.

Teniendo en cuenta que ¢ = 1, entonces la frecuencia de corte corresponde a la
ganancia de 0.5. Al revisar la Figura anterior, este valor se encuentra en 0.6 [rad/
muestral, aproximadamente.

A nivel tedrico, calculamos la frecuencia de corte con el siguiente codigo:

wd =2*np.arctan (frad/ (fs*2))
wd

Obteniendo
0.608501664475969

Coincidiendo el valor tedrico con el encontrado a partir de la grafica del filtro
digital.

Por otro lado, podemos escribir la funcion de transferencia del filtro digital, a partir
de los vectores filtz.num y filtz.den.

Sabiendo que,

filtz.num

array ([ 0.57917428, -1.15834857, 0.57917428])

filtz.den




PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 87|

array ([ 1. , -1.04414003, 0.2725571 1)

Entonces, escribimos H(z), partiendo de z° en el primer término del polinomio,
tanto del numerador como del denominador, obteniendo que:
H(Z) = 0.57917428 - 1.15834857z! + 0.57917428z*
1-1.04414003z* +0.2725571z*

Como siguiente paso, se calculan los ceros, polos y ganancia del filtro digital, utilizan-
do signal.tf2zpk,asi

z, p, k = signal.tf2zpk(filtz.num,filtz.den)
print (z)
print (p)
print (k)

Obteniendo:
[1. 1.]

[0.52207002 0.52207002]
0.5791742828084856

Finalmente, se grafican los polos y ceros del filtro digital:

theta = np.linspace(-np.pi,np.pi, 201)
plt.rcParams[“figure.figsize”] = (5,5)

sin (theta))

plt.plot (np.cos (theta),np.
np.imag(z), marker='0o")
np.

Y

plt.scatter (np.real (z)
plt.scatter (np.real (p)
plt.title (‘Gréafica polos

’
14
, imag (p), marker=’'x’")

ceros filtro digital’)

Figura 52. Grifica de polos y ceros del filtro digital pasa-alto, w =0.6 [rad/muestra].

A partir de la grafica anterior, se pueden extraer las siguientes conclusiones:
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|.Si el filtro es pasa-alto, los dos ceros se ubican en z=1.

2.Los polos estan relacionados con la frecuencia de corte del filtro digital.

En este caso se ubican en el semicirculo derecho del plano z, dado que (w4
<m)/2.

Ejemplo 2: filtro pasa-bajos

Se quiere disenar un filtro digital utilizando Transformada Bilineal, a partir de un

filtro analogo pasa-bajo, con Q.= 100 [Hz], =0.707, y G=1. La frecuencia de mues-
treo es 4 veces la frecuencia de corte del filtro analogo.

El primer paso consiste en convertir la frecuencia de corte que inicialmente esta en
[Hz], en unidades [rad/seg]. Posteriormente, escribir la funcion de transferencia en
el dominio analogo, teniendo en cuenta el tipo de filtro, asi:

1* (100 * 2 * m)?
s+ (2*0.707 * 100 * 2 * m)s + (100 * 2 *m)?

H(s) =

A partir de H(s) se escribe el siguiente cédigo en Python:

import numpy as np

from scipy import signal

import matplotlib.pyplot as plt

f = 100

frad = 2*3.14*f

amort = 0.707

G =1

nums=np.array ([0, 0, G*frad*frad])
dens=np.array([l, 2*amort*frad, frad*frad])

ws, hs = signal.freqgs (nums, dens)
plt.plot (ws, (np.abs(hs)), label=r’S|H(s)|[$")
plt.legend()

plt.xlabel (‘Frecuencia [rad/seg]’)
plt.ylabel (‘Magnitud’)
plt.title(‘Respuesta en frecuencia del filtro andlogo’)

plt.grid()

Figura 53. Respuesta en frecuencia filtro analogo pasa-bajo, Q. = 2007 [[rad/seg].].
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Posteriormente, se utiliza la Transformada Bilineal para encontrar la funcion de
transferencia del filtro digital, con el siguiente codigo:

fs=4 *f

filtz = signal.dlti(*signal.bilinear (nums, dens, fs))
wz, hz = signal.freqgz (filtz.num, filtz.den)

plt.plot (wz, (np.abs(hz)), label=r’$|H(z)|$")
plt.legend()

plt.xlabel (‘Frecuencia normalizada [rad/muestra] ‘)
plt.ylabel (‘Magnitud’)

plt.title(‘Respuesta en frecuencia del filtro digital’)
plt.grid()

Obteniendo,

Figura 54. Respuesta en frecuencia filtro digital pasa-bajo, wq = 0.133 [radMmuestra], ¢ = 0.707.

La ganancia en la frecuencia de corte es 0.707, dado que ¢ = 0.707. Entonces la fre-
cuencia de corte del filtro digital a partir de la grafica es:

X = np.where(abs(hz) > 0.707)
wcd = np.max(x)*3.14/len(wz)
print (wcd)

1.3246875

A nivel teodrico, la frecuencia de corte la encontramos con la siguiente ecuacion:

wd =2*np.arctan (frad/ (fs*2))
wd

1.3310548874510058

Los dos valores anteriores son muy cercanos, entonces el filtro quedo bien disena-
do.

Como siguiente paso, encontramos las constantes de los polinomios del numerador
y denominador de H(z), asi:

| filtz.num |

array([0.22603683, 0.45207366, 0.22603683])
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| filtz.den

array ([ 1. , -0.28154419, 0.18569152])

Y escribimos la funcion de transferencia del filtro digital:

H(z) = 0.22603683 + 0.45207366z" + 0.22603683z2
1-0.28154419z*! + 0.18569152z2

Los ceros, polos y ganancia de H(z), la encontramos con el siguiente codigo:

z, p, k = signal.tf2zpk(filtz.num,filtz.den)
print(z)
print (p)
print (k)

Obteniendo:
[-1. -1.]

[0.1407721+40.4072772275 0.1407721-0.407277227]
0.22603683128439978

Es decir, el filtro tiene dos ceros en z = -1,y dos polos muy cercanos al eje vertical
del plano z.

La grafica de polos y ceros del filtro se obtiene con el siguiente cédigo:

theta = np.linspace(-np.pi,np.pi,201)
plt.rcParams [“igure.figsize”] = (5,5)
plt.plot (np.cos (theta),np.sin(theta))
plt.scatter(np.real(z),np.imag(z), marker='0’)
plt.scatter (np.real (p),np.imag(p), marker='x’")
plt.title(‘Gréafica polos y ceros filtro digital’)

Figura 55. Grafica de polos y ceros del filtro digital pasa-bajo, w =1.33 [radfmuestra].

A partir de la grafica anterior, se pueden extraer las siguientes conclusiones:
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I. Si el filtro es pasa-bajo, los dos ceros se ubican en z = -1.

2. Los dos polos se ubican en el semicirculo derecho del plano z (muy cerca del
eje vertical), dado que la frecuencia de corte, w , es ligeramen te menor a 7/2.

Ejemplo 3: filtro pasa-banda de banda angosta

Se quiere disenar un filtro digital utilizando Transformada Bilineal, a partir de un

filtro andlogo pasa-banda, con Q =100 [Hz], @ =2,y G = 1. La frecuencia de mues-
treo es 3 veces la frecuencia de corte del filtro analogo.

El primer paso consiste en convertir la frecuencia de corte que inicialmente esta en
H(z) en unidades [rad4eg]. Posteriormente, escribir la funcion de transferencia en
el dominio analogo, teniendo en cuenta el tipo de filtro, asi:

1002 +m
W —

1
2
H(s) =
g +(M)s+[lﬂﬂa2:n‘]z

A partir de H(s) se escribe el siguiente cédigo en Python:

f =

Q =
G =

WS,
plt

import numpy as np
from scipy import signal
import matplotlib.pyplot as plt

frad = 2*3.14*f

nums=np.array ([0, G*frad/Q, 0])
dens=np.array([l, frad/Q, frad*frad])

.plot (ws, (np.abs(hs)), label=r’S$|H(s)|$")
plt.
plt.
plt.
plt.
plt.

100

2
1

hs = signal.fregs (nums, dens)

legend ()

xlabel (‘Frecuencia [rad/seg]’)

ylabel (‘Magnitud’)

title (‘Respuesta en frecuencia del filtro andlogo’)
grid()

Figura 56. Respuesta en frecuencia filtro anilogo pasa-banda, Q = 2007 [radseg].
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Y se convierte el filtro andlogo en digital con la Transformada Bilineal, asi:

fs=3 *f

filtz = signal.dlti(*signal.bilinear (nums, dens, fs))
wz, hz = signal.freqgz (filtz.num, filtz.den)

plt.plot (wz, (np.abs(hz)), label=r’$|H(z)|$")
plt.legend()

plt.xlabel (‘Frecuencia normalizada [rad/muestral’)
plt.ylabel (‘Magnitud’)

plt.title(‘Respuesta en frecuencia del filtro digital’)
plt.grid()

Figura 57. Respuesta en frecuencia filtro digital pasa-banda, w = 1.61 [radfmuestra], Q = 2.

La frecuencia de resonancia la encontramos a partir de la grafica anterior, con el
siguiente codigo en Python:

x = np.where (abs(hz) > 0.999)
wcd = np.max(x)*3.14/len (wz)
print (wcd)

1.6251953125

A nivel tedrico, la frecuencia de resonancia del filtro digital es:

wd =2*np.arctan (frad/ (fs*2))
wd

1.6163910321996993

Los valores anteriores son muy similares entre si, entonces hemos verificado que el
filtro quedo bien disehado.

Las constantes de los polinomios del numerador y denominador de la funcion de
transferencia del filtro digital son:

| filtz.num |

array ([ 0.19983368, 0. , -0.19983368])

[ filtz.den |

array([1l. , 0.07294142, 0.60033263])
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De tal forma que H(z) es:

H(z)=(0.19983368+[-0.199833682)]"(-2))/(1-0.07294142z"(-1)+
[0.600332632)(-2))
0.19983368 + 0.199833682
H(z) =

1- 0.07294142z1 + 0.600332632*

Los ceros, polos y ganancia del filtro digital se calculan con el siguiente codigo en
Python:

z, P, k = signal.tf2zpk(filtz.num,filtz.den)
print (z)

print (p)
print (k)

[-1. 1.]
[-0.03647071+0.77395253) -0.03647071-0.773952537]
0.1998336840676125

Y se grafican con el siguiente codigo:

theta = np.linspace(-np.pi,np.pi,201)
plt.rcParams[“figure.figsize”] = (5,5)

plt.plot(np.cos(theta),np.sin(theta))
plt.scatter(np.real(z),np.imag(z), marker='0o")
plt.scatter (np.real (p),np.imag(p), marker=’'x’")
plt.title(‘Grafica polos y ceros filtro digital’)

Figura 58. Grifica de polos y ceros del filtro digital pasa-banda, wq=1.61 [radfmuestra].
A partir de la grafica anterior, se pueden extraer las siguientes conclusiones:

I. En este caso, existe un cero en z=-1y otro en z = 1, dado que el filtro
es pasa-banda.

2. Los dos polos se ubican en el semicirculo izquierdo del plano z, dado
que la frecuencia de resonancia, w,, es mayor a /2.
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5.4. FILTRO BUTTERWORTH

En esta ultima seccidon de diseno de filtros IIR, trabajaremos con los filtros But-
terworth, los cuales se caracterizan por:

* Respuesta plana en la banda de paso.

* En la frecuencia de corte tiene una ganancia de -3 dB en escala loga-
ritmica, o de \/2/2 en escala lineal, respecto a la amplitud en la banda
de paso.

e H(s) solamente posee polos.

Apoyandonos en Python tenemos dos estrategias para disenar los filtros Butterwor-
th, las cuales son:

Disenar un filtro analogo Butterworth y aplicar Transformada Bilineal.
Disenar directamente el filtro digital Butterworth.
A continuacion, exploraremos las dos estrategias de diseno, a partir de ejemplos.
Ejemplo I: filtro Butterworth andlogo y Transformada Bilineal

Se quiere disenar un filtro Butterworth pasa-bajo, a partir de un filtro analogo y
aplicando Transformada Bilineal, para diferentes valores de orden del filtro (especifi-
camente, N = 2,4,6,8,10). La frecuencia de corte del filtro analogo es (). = 100 [Hz].

* Graficar la respuesta en frecuencia del filtro analogo, para N = 2,4,6,8,10.
*  Escribir H(s) cuando N = 2.

* Calcular el filtro digital a partir del filtro analogo aplicando Transformada
Bilineal, con f, = 10 * ) . Graficar la respuesta en frecuencia del filtro digi-
tal Butterworth, para N = 2,4,6,8,10

*  Escribir H(z) cuando N = 2.

* Obtener los polos y ceros del filtro digital Butterworth, para N =

2,4,6,8,10 Graficar los polos y ceros del filtro digital Butterworth, para
N=2,4,6,8,10.

Respuesta en frecuencia del filtro analogo, N = 2,4,6,8,10:

import numpy as np

from scipy import signal

import matplotlib.pyplot as plt
f = 100

wn = f * 2 * np.pi
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N =2
b2,a2 = signal.iirfilter (N, wn, btype=’"lowpass’, analog=True,
ftype='butter’)
ws2, hs2 = signal.freqgs (b2, a2)
wsHz2=ws2/ (2*np.pi)
plt.rcParams|[“figure.figsize”] = (14,8)
plt.plot (wsHz2, (np.abs(hs2)), label=r’$|H(s)| con N=2$')
plt.legend()
plt.xlabel (‘Frecuencia [Hz]")
plt.ylabel (‘Magnitud’)
plt.title(‘Respuesta en frecuencia filtro pasa bajo’)
plt.grid()
N =4
b4,a4 = signal.iirfilter (N, wn, btype=’"lowpass’, analog=True,
ftype='butter’)
ws4, hs4 = signal.freqgs (b4, a4)
wsHz4=ws4/ (2*np.pi)
plt.plot (wsHz4, (np.abs(hsd)), label=r’$|H(s)| con N=4$')
plt.legend()
N = 6
b6,a6 = signal.iirfilter (N, wn, btype='"lowpass’, analog=True,
ftype="butter’)
ws6, hs6 = signal.fregs (b6, a6)
wsHz6=ws6/ (2*np.pi)
plt.plot (wsHz6, (np.abs(hs6)), label=r’S$|H(s)| con N=6$')
plt.legend()
N = 8
b8, a8 = signal.iirfilter (N, wn, btype=’lowpass’, analog=True,
ftype="butter’)
ws8, hs8 = signal.freqgs (b8, a8)
wsHz8=ws8/ (2*np.pi)
plt.plot (wsHz8, (np.abs(hs8)), label=r’S$|H(s)| con N=8%")
plt.legend()
N = 10
b10,al0 = signal.iirfilter (N, wn, btype=’'lowpass’, analog=True,

ftype="butter’)

wsl1l0, hsl0 = signal.fregs(bl0, all)

wsHz10=wsl0/ (2*np.pi)

plt.plot (wsHz10, (np.abs(hsl0)), label=r’$|H(s)| con N=10$")
plt.legend()

plt.show()

Nota:Tener en cuenta que el vector de frecuencias, ws, se divide entre 27, para que

la grafica quede en [Hz].

Obteniendo las siguientes respuestas en frecuencia del filtro analogo:
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Figura 59. Respuesta en frecuencia filtro analogo Butterworth, .= 100[Hz] y N = 2,4,6,8,10.

De la figura anterior se puede identificar que independiente del orden del filtro, la
ganancia en la frecuencia de corte es la misma, correspondiente a 0.707. Es decir, to-
das las curvas cruzan por el mismo valor de ganancia cuando .= 100[Hz]. Adicio-
nalmente, a medida que el valor de N aumenta, entonces la caida entre la banda de
paso y la banda de rechazo se hace mas pronunciada, es decir, mayor atenuacion en
las frecuencias cercanas a la de corte (se aproxima en mayor medida al filtro ideal).

Funcion de transferencia del filtro analogo, para N = 2:

Previamente se han encontrado las constantes de los polinomios tanto del numera-

“,_n

dor como del denominador del filtro analogo, en las variables “b”y “a”. Para el caso
de N = 2, se utilizan b2 y a2.

[ o2 I

array ([394784.17604357])

[[a2 |

array ([1.00000000e+00, 8.88576588e+02, 3.94784176e+05])

A partir de los resultados anteriores, se tiene que:

39.47*10*

H(s) =
(5) s2+8.88*10%s + 3.94 * 105

Nota: por simplicidad se expresé H(s) solamente con dos cifras decimales.

Calculo de H(z) y respuesta en frecuencia del filtro digital:

Se utiliza *signal.bilinear para realizar el mapeo entre el filtro analogo y el
filtro digital, y signal.freqgz para la respuesta en frecuencia del filtro digital.
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fs= 10*f # frecuencia de muestreo en Hz

filtz2 = signal.dlti(*signal.bilinear (b2, a2, fs))

wz2, hz2 = signal.freqgz (filtz2.num, filtz2.den)

plt.plot (wz2, (np.abs(hz2)), label=r’$|H(z)|$’) # se repite para los
demés valores de N

plt.legend()

plt.xlabel (‘Frecuencia normalizada [rad/muestral’)

plt.ylabel (‘Magnitud’)

plt.title(‘Respuesta en frecuencia del filtro digital’)

plt.grid()

Obteniendo las siguientes respuestas en frecuencia del filtro digital:

Figura 60. Respuesta en frecuencia filtro digital Butterworth, W = 0.6 [rad/muestra] y N = 2,4,6,8,10.

Teniendo en cuenta que se aplicé Transformada Bilineal para el diseno del filtro digi-
tal, entonces se utiliza la ecuacién que relaciona la frecuencia del filtro analogo con
la del filtro digital que se present6 en la seccién 5.3, asi:

fcdigital= 2 * np.arctan(wn/ (2*fs))
print (fcdigital)

0.6087915947292302

Funcion de transferencia del filtro digital, para N=2:

A partir de los vectores filtz.num y filtz.den se encuentran las constantes de los po-
linomios del numerador y denominador de H(z), respectivamente. Especificamente
para N = 2, se utiliza filtz2 .num y filtz2.den.

| filtz2.num |

array([0.06396438, 0.12792877, 0.06396438])

I nitzz.den

array ([ 1. , -1.16826067, 0.42411821])

Y entonces,
0.0639 + 0.1279z1 + 0.0639z2
1-1.1683z1'+0.4241z72

Nota: por simplicidad se expreso H(z) solamente con cuatro cifras decimales.

H(z) =




| 98| Dora Maria Ballesteros, Diego Renza

Calculo y grafica de los polos y ceros del filtro digital, para N = 2,4,6,8,10:

z2,
z4,
z6,
z8,
z10

p2, k2 = signal.tf2zpk(filtz2.num,filtz2.den)
p4, k4 = signal.tf2zpk(filtz4.num,filtz4.den)
p6, k6 = signal.tf2zpk(filtz6.num,filtz6.den)
p8, k8 = signal.tf2zpk(filtz8.num,filtz8.den)
, pl0, k10 = signal.tf2zpk (filtz10.num,filtz10.den)

plt

plt

theta = np.linspace(-np.pi,np.pi,201)

plt.
plt.
plt.

.rcParams [“figure.figsize”] = (5,5)

.plot (np.cos (theta),np.sin(theta))

scatter (np.real(z2),np.imag(z2), marker=’'0o’")
scatter (np.real (p2),np.imag(p2), marker='x’")
title (‘Gréafica polos y ceros filtro digital, N=27)

plt

plt.
plt.
plt.

.plot (np.cos (theta),np.sin(theta))

scatter (np.real(z10),np.imag(z10), marker='0o")
scatter (np.real (pl0),np.imag(pl0), marker=’'x’")
title (‘Gréafica polos y ceros filtro digital, N=10 V')

Y se obtienen las graficas que se presentan en la Figura 61. Se puede apreciar que
independiente del orden del filtro todos los ceros se ubican en z = -1 (por ser un
filtro pasa-bajos), y que todos los polos se ubican en el semicirculo derecho (dado
que w,<1/2).

a) b)

Figura 61. Grifica de polos y ceros del filtro pasa pasa-bajo Buttherworth digital, w,= 0.6

[radmuestral y N = 2,4,6,8,10. Estrategia de diseno # |.
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Ejemplo 2: filtro Butterworh digital

Se quiere disenar directamente un filtro Butterworth digital, correspondiente con
un filtro andlogo con =100 [HZ],fs =10 * Q , y diferentes valores de orden del
filtro, especificamente N = 2,4,6,8,10.

* Calcular Hz y graficar el filtro digital Butterworth, para N = 2,4,6,8,10.
e Escribir Hz cuando N = 2.

* Obtener los polos y ceros cuando N = 2,4,6,8,10. Graficar los polos y
ceros cuando N =2,4,6,8,10.

Como primer paso, debemos encontrar la frecuencia normalizada del filtro digital,
la cual la podemos expresar como:

w = L Ecuacion 49
n fs/z
Que, en este caso es:
_ 100
Wn - 1000 - 0-2
2

Nota: tener en cuenta que O <w <1.

Posteriormente, utilizamos la instruccion signal.iirfilter,haciendo analo-
g=False.

Calculo de H(z) y grafica de la respuesta en frecuencia del filtro digital:

import numpy as np
from scipy import signal
import matplotlib.pyplot as plt

N = 2

f = 100

fs = 10*f

wn = £/(fs/2)

b2, a2 = signal.iirfilter (N, wn, btype=’lowpass’, analog=False,

ftype="butter’)

wz2, hz2 = signal.freqz (b2, a2, fs)
plt.rcParams[“figure.figsize”] = (14,8)

plt.plot(wz2, (np.abs(hz2)), label=r’$|H(z) |, N=2$')
plt.legend()

plt.xlabel (‘Frecuencia normalizada [rad/muestral’)
plt.ylabel (‘Magnitud’)

plt.title(‘Rta frecuencia filtro digital Butterworth’)
plt.grid()

N = 4

b4, a4 = signal.iirfilter (N, wn, btype=’lowpass’, analog=False,
ftype="butter’)

wz4, hz4 = signal.freqgz (b4, a4, 4000)

plt.plot (wz4, (np.abs(hz4)), label=r’S$|H(z) |, N=4$')

plt.legend()
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N = 6

b6, a6 = signal.iirfilter (N, wn, btype=’'lowpass’, analog=False,
ftype="butter’)

wz6, hz6 = signal.freqgz (b6, a6, 4000)

plt.plot(wz6, (np.abs(hz6)), label=r’S$|H(z)|, N=6$")

plt.legend()

N = 8

b8, a8 = signal.iirfilter (N, wn, Dbtype=’lowpass’, analog=False,
ftype="butter’)

wz8, hz8 = signal.freqgz (b8, a8, 4000)

plt.plot (wz8, (np.abs(hz8)), label=r’$|H(z) |, N=8%')

plt.legend()

N = 10

b10, al0 = signal.iirfilter (N, wn, btype=’lowpass’, analog=False,
ftype='"butter’)

wz1l0, hz1l0 = signal.freqgz (b10, al0, 4000)

plt.plot (wz1l0, (np.abs(hz1l0)), label=r’S$|H(z)|, N=10S$")
plt.legend()

plt.show ()

Figura 62. Respuesta en frecuencia filtro Butterworth digital pasa pasa-bajo, w,=0.2'y
N = 2,4,6,8,10. Estrategia de diseno #2.

Funcion de transferencia del filtro digital, para N = 2:

A partir de los vectores b y a se encuentran las constantes de los polinomios del
numerador y denominador de H(z), respectivamente. Especificamente para N = 2,
se utilizab2 y a2.

[ b2 |

array([0.06745527, 0.13491055, 0.06745527])

a2 |

array([ 1. , -1.1429805, 0.4128016])

Y entonces,
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0.0674 + 0.1349z"' + 0.0674z*
1-1.1429z'+0.4128z*

Nota |: por simplicidad se expresé H(z) solamente con cuatro cifras decimales.

H(z) =

Nota 2: se puede comparar este valor de H(z) con el obtenido en el ejemplo #I de
esta seccion.

Calculo y grafica de los polos y ceros del filtro digital, para N=2,4,6,8,10:

z2, p2, k2 = signal.tf2zpk(b2, a2)
z4, p4, k4 = signal.tf2zpk (b4, ad)
z6, p6, k6 = signal.tf2zpk (b6, ab)
z8, p8, k8 = signal.tf2zpk (b8, a8)
z10, pl0, k10 = signal.tf2zpk(bl0, all)

Se utiliza el mismo codigo que del ejemplo # | de esta seccion para graficar los
polos y ceros de los filtros digitales. Las graficas se presentan en la Figura 63.

a) b)

Figura 63. Grafica de polos y ceros del filtro pasa pasa-bajo, w,= 0.2 y N = 2,4,6,8,10.
Estrategia de disefio # 2.
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Al comparar la Figura 63 con la Figura 61, se aprecia que la ubicacion de los polos y
ceros es muy similar, por lo que las dos estrategias de diseno de esta seccion per-
miten llegar al “mismo resultado”.

5.5. FILTRADO DE SENALES CON FILTROS IIR

Para finalizar esta seccion de filtros lIR, vamos a filtrar una sefal con un filtro IIR
disenado con el método de Transformada Bilineal, a partir de un filtro analogo.

Para ello, utilizaremos la siguiente senal:

Figura 64. Senal en el dominio del tiempo, xnoise[n].

Esta senal se ha generado con el siguiente cédigo en Python,

#Paso 1: 1importar librerias de trabajo
import numpy as np

import scipy as sp

import matplotlib.pyplot as plt

from scipy import signal

import math

#Paso 2: generar una sefial sin ruido
f = 500 # Hz

fs = 100 * £

step = 1/fs

frad = £ * 2 * math.pi

t = np.arange (0,10/f, step)

X = np.sin(frad*t)

#Paso 3: generar ruido aleatorio

samples = len(x)

An= 0.8

noise = An*np.random.rand (samples) - An/2

# Paso 4: sumar la sefial senoidal con la sefal de ruido
xnoise = x + noise

plt.plot (t,xnoise)
plt.xlabel (‘tiempo [s]’)

plt.ylabel (‘Amplitud’)
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Visualizando xnoise[n], ésta contiene dos senales, una correspondiente a x[n],y otra
a noise[n]. Especificamente, x[n] es una sehal senoidal; mientras que, noise[n], es un
ruido de fondo. Sin embargo, para poder tener informacién mas puntual del com-
portamiento en frecuencia tanto de x[n]| como de noise[n], es necesario realizar un
analisis espectral de la senal xnoise[n].

Entonces, utilizamos el codigo en Python que vimos en el Capitulo |, para el calculo
y grafica de la Transformada de Fourier de la senal.

import scipy.fftpack as fourier

L=len (xnoise)

transformada = fourier.fft (xnoise)
magnitud = abs (transformada)

magnitud lateral = magnitud[0:L//2]
fase = np.angle(transformada)
frecuencias = fs*np.arange (0, L//2)/L
plt.plot (frecuencias, magnitud lateral)
plt.xlabel (‘Frecuencia (Hz)’, fontsize="10")
plt.ylabel (‘|FFT|’, fontsize="10")
plt.show ()

Obteniendo el siguiente espectro de xnoise[n]

Figura 65. Espectro de xnoise[n].

Observamos que existe un tono (senal de frecuencia pura) correspondiente a la
senal senoidal, y que el ruido se encuentra en todos los valores de frecuencia, hasta
f./2 (es decir 25K [Hz]).

Para determinar la frecuencia exacta correspondiente a la sefal senoidal, vamos a
apoyarnos en el siguiente codigo en Python:

| np.max (magnitud lateral) |

496.67405522769

x = np.where (abs (magnitud lateral) == np.max (magnitud lateral))
f tono = np.min(x)*(fs/2)/len(magnitud lateral)

print (£ tono)

500.0

De tal forma que, el tono se encuentra ubicado en los 500 [Hz], de amplitud 496.67.

Teniendo en cuenta que queremos filtrar el ruido que abarca todas las frecuencias,
y que la sefal de interés se encuentra Unicamente en la frecuencia de 500 [Hz], lo
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mas conveniente en este caso es disenar un filtro pasa-banda de banda angosta, con

Q> 0.5 (. Q= 1),y 2,= 500 [Hz].

Entonces, la funcion de transferencia del filtro analogo queda de la siguiente forma:

A partir de H(s) se escribe el siguiente cédigo en Python:

import numpy as np
from scipy import signal
import matplotlib.pyplot as plt

£ = 500

frad = 2*3.14*f
Q=1

G =1

nums=np.array ([0, G*frad/Q, 0])
dens=np.array([1l, frad/Q, frad*frad])

ws, hs = signal.freqgs (nums, dens)

plt.plot(ws, (np.abs(hs)), label=r’S|[H(s)[S")
plt.legend()

plt.xlabel (‘Frecuencia [rad/seg]’)

plt.ylabel (‘Magnitud’)

plt.title(‘Respuesta en frecuencia del filtro andlogo’)
plt.grid()

Y obtenemos la siguiente respuesta en frecuencia del filtro analogo,

Figura 66. Respuesta en frecuencia filtro andlogo pasa-banda, () = 10007 [radseg].

Y aplicamos Transformada Bilineal, para obtener H(z), asi:

filtz = signal.dlti(*signal.bilinear (nums, dens, fs))
wz, hz = signal.freqgz (filtz.num, filtz.den)

plt.plot (wz, (np.abs(hz)), label=r’$|H(z)|$")
plt.legend()

plt.xlabel (‘Frecuencia normalizada [rad/muestral’)
plt.ylabel (‘Magnitud’)

plt.title(‘Respuesta en frecuencia del filtro digital’)
plt.grid()
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Figura 67. Respuesta en frecuencia filtro digital pasa-banda, w,= 0.061 [radMmuestra].

La frecuencia de corte del filtro digital la obtenemos tanto a partir de la grafica de
la respuesta en frecuencia del filtro, como de la ecuacion tedrica que relaciona la
frecuencia del filtro andlogo con la frecuencia del filtro digital.

Utilizamos el siguiente codigo en Python:

| np.max (abs (hz))

0.9958317963050908

x = np.where (abs (hz) == np.max (abs(hz)))
wcd = np.max(x)*3.14/1len (wz)
print (wcd)

0.061328125000000004

wd =2*np.arctan (frad/ (fs*2))
wd

0.06277937277186546
Verificamos que los valores son similares, entonces el filtro quedo bien disenado.

Posteriormente, encontramos las constantes de los polinomios del numerador y
denominador de H(z), asi:

| filtz.num |

array ([ 0.01544233, 0. , -0.01544233])

[ filtz.den |

array ([ 1. , -1.96523623, 0.96911534])

Y escribimos H(z) de la siguiente manera,

0.015-0.015z2
1-1.965z"! +0.969z

H(z) =
Nota: por simplicidad se han utilizado solamente tres cifras decimales en H(z).

A partir de H(z) filtramos la sehal con signal.filtfilt, con el siguiente codigo:
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filtrada = signal.filtfilt (filtz.num, filtz.den, xnoise)
plt.rcParams[“figure.figsize”] = (10,6)

plt.plot (t,filtrada)

Nota: a diferencia del caso de filtros FIR, ahora el parametro “a” de la instruccion
signal.filtfilt no es una constante de valor igual a uno, sino que también es
un vector. Especificamente, con el nombre de las variables que hemos utilizado,
corresponde a filtz.den.

Obteniendo como resultado:

Figura 68. Senal filtrada en el dominio del tiempo.

Adicionalmente, podemos verificar que el espectro de la senal filtrada no contiene
el ruido de fondo, con el siguiente cédigo en Python:

transformada? = fourier.fft (filtrada)
magnitud2 = abs (transformada?2)

magnitud lateral2 = magnitud2[0:L//2]

fase2 = np.angle(transformada?2)

frecuencias2 = fs*np.arange(0, L//2)/L
plt.rcParams|[“figure.figsize”] = (10,6)
plt.plot (frecuencias2, magnitud lateral2)
plt.xlabel (‘Frecuencia (Hz)’, fontsize="10")
plt.ylabel (‘|FFT|’, fontsize="10")
plt.show ()

Figura 69. Espectro de la senal filtrada.
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CAPITULO 6.

Procesamiento de IMAGENES

Como capitulo final de este libro, trabajaremos con senales en dos dimensiones,
especificamente con imagenes. Esto te permitira obtener las bases conceptuales y
de programacion para abordar cursos mas avanzados en procesamiento de imagen,
por ejemplo, de vision por computador.

Al finalizar el capitulo, deberas estar en capacidad de:

I Explicar las diferencias entre imagenes blanco-negro, escala de grises, e
imagenes a color.

2. Explicar en qué consisten los modelos de color RGB y HSV, asi como rea-
lizar conversiones utilizando la libreria de OpenCV de Python.

3. Realizar ecualizacién de imagen utilizando la libreria de OpenCV de Python.
4. Distinguir diferentes tipos de ruido en imagenes.
5. Reconocer qué tipo de filtro es adecuado para reducir un tipo de ruido

especifico en la imagen.
Explicar el concepto de convolucién en imagenes.
Realizar deteccion de bordes a partir de diferentes tipos de kernels.

Explicar las diferencias entre DCT y DFT en imagenes.

¥ © N o

Aplicar la DCT o la DFT en imagenes utilizando la libreria de OpenCV de
Python.

10. Explicar el concepto de compresion de imagenes.

6.1. CONCEPTOS BASICOS DE IMAGENES

En las primeras secciones del libro hemos trabajado con sehales uni-dimensionales,
y gran parte de los ejemplos se han enfocado en audio. En este capitulo, nos enfo-
caremos en imagenes, que corresponden a senales en 2D, cuyos ejes corresponden
a filas y columnas.
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Lo primero que debemos saber es que no todas las imagenes tienen las mismas
caracteristicas. Por ejemplo, pueden variar entre ellas el tamano y el color utilizado.

En relacion con el tamano, la unidad de medida es el pixel, y la resolucion de la
imagen esta dada por la cantidad de filas y columnas. Entonces, una imagen de 100
x 100 tendra 10,000 pixeles de resolucion, mientras que, una imagen de 1,000 x
1,000 tendra IM pixeles de resolucion. En las camaras digitales actuales es tipico
encontrar resoluciones de varios mega pixeles. Entonces, hemos identificado la pri-
mera diferencia entre las senales |D correspondientes a audio y las imagenes, en el
primer caso hablabamos de muestras de la senal, y ahora hablaremos de pixeles de
la imagen.

La segunda caracteristica de la imagen corresponde a su color. Podemos encontrar
imagenes a blanco-negro (BWV: black and white), a escala de grises y a color de tres
bandas (aunque también existen imagenes con mayor nimero de canales, las cuales
no abordaremos en este libro).

Las primeras, BW, tienen solamente un bit asociado a cada pixel de la imagen, de tal
forma que, si la imagen tiene | M pixeles, entonces tendra |M bits. El valor de““|” co-
rresponde al blanco, mientras que, el valor de “0” corresponde al negro. Las segun-
das, imagenes a escala de grises, tienen 8 bits por cada pixel, y el rango de color va
del negro (“00000000”) al blanco (“I I 1I'1111”) pasando por distintas tonalidades
de gris, para un total de 256 colores. Entonces, una imagen de |M pixeles tendra
8Mbits, o de forma equivalente | MB. Finalmente, tenemos las imagenes a color, que
tipicamente se denominan RGB (Red, Green, Blue), aunque realmente ese es uno de
los espacios de color que existen. En este caso, por cada pixel de la imagen tenemos
8 bits asociados a cada uno de los tres canales de color, para un total de 24 bits por
pixel. Retomando el mismo ejemplo, para la imagen de M pixeles, tendremos 3MB.

Para ilustrar de mejor forma las diferencias en términos de color de las imagenes
BW, a escala de grises y a color, se presenta en la Figura 70 una imagen del reposi-
torio personal de los autores del libro.

(@) (b) ()
Figura 70. Ejemplo de imagen: a) BW, b) Escala de grises, c) Color. Fuente: repositorio
personal de los autores.
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6.2. ESPACIOS DE COLOR

El espacio de color mas ampliamente conocido se denomina RGB, donde la imagen
se representa en tres canales o “bandas” de color, una correspondiente al rojo, otra
al verde, y la dltima al azul. Cada color tiene 256 tonalidades distintas (28),y en total
se tiene una paleta del6,776,216 colores (es decir, 22*). Retomando el ejemplo de la
seccion anterior, se presentan las tres bandas de color en la Figura 71.

@) (b) (c)

Figura 71.Ejemplo de imagen RGB: a) banda R, b) banda G, c) banda B. Fuente: repositorio
personal de los autores.

(2) (b) ()
Figura 72. Ejemplo de imagen HSB: a) banda H, b) banda S, c) banda B. Fuente: repositorio
personal de los autores.

Otro espacio de color corresponde a HSV (Hue, Saturation,Value) o también conoci-
do como HSB (Hue, Saturation, Brightness). En este espacio de color, la primera banda
corresponde al tono de la imagen, la segunda a la saturacion de la imagen, y la terce-
ra al brillo de la imagen. Para nuestra foto de la playa, las tres bandas se presentan en
la Figura 72. En este espacio de color, la banda de brillo (Figura 72b) es muy similar
a la imagen a escala de grises (que presentamos en la Figura 70b).

6.3. INTRODUCCION A LA LIBRERIA OPENCV

Bueno, en este punto te preguntaras como se puede leer la imagen en lenguaje
Python, convertir una imagen a color en una imagen a escala de grises y/o BW,
asi como transformar una imagen de un espacio a color a otro. Para ello, vamos a
utilizar la libreria OpenCV de Python, la cual es especializada en procesamiento de
imagenes*.

4 https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_tutorials.html
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Figura 73.Logo de OpenCV.
Entonces, manos a la obra con el cédigo en Python.

Paso I: importar la libreria de OpenCV, leer la imagen que previamente hemos subido a
nuestro entorno de trabajo en Colaboratory, y conocer el tamano de la imagen.

import cv2
img = cv2.imread (“/content/Fig74.7pg”)
img.shape

Para la imagen de prueba, el resultado es:
(300, 400, 3)

Paso 2: visualizacién de la imagen. Para ello se debe importar un patch en Colaboratory.

from google.colab.patches import cv2 imshow
cv2_imshow (img)

Figura 74.1magen a color — foto playa.

Nota: si trabajas en Jupyter Notebook no es necesario que importes el patch, y
puedes utilizar cv2.imshow.

Paso 3: conversion de imagen RGB a escala de grises

img gray=cv2.cvtColor (img, cv2.COLOR RGB2GRAY)

cv2 imshow (img gray)
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Figura 75. Imagen a escala de grises — foto playa.

Paso 4: conversion de imagen a escala de grises en BW

r,img bw = cv2.threshold(img gray,45,255,cv2.THRESH BINARY)

cv2_ imshow (img bw)

Figura 76.1magen a blanco y negro — foto playa.

Lo que hemos realizado en este paso 4 se conoce como umbralizacion de la imagen
(o thresholding, en inglés), proceso en el cual a los pixeles que superan el umbral se
les asigna el color blanco, y a los que no superan el umbral se les asigna el color
negro. Si modificamos el valor del umbral, la imagen va a lucir mas clara (umbral
bajo) o mas oscura (umbral alto). Podemos apreciar que las palmeras tienen el color
negro, mientras que el mary el cielo el color blanco, dado que, en la imagen a escala
de grises la tonalidad de gris tanto del cielo como del mar es mucho mas clara que
la de las palmeras.

La instruccion cv2.threshold® requiere de dos valores numéricos, el primero
corresponde al umbral, y el segundo al valor que se asigna en caso de que el pixel
supere el umbral. En el ejemplo, el umbral es 45 y el valor asignado a los pixeles que
superen el umbral es 255.

5 https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_thresholding/
py_thresholding.html
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Paso 5: guardar las imagenes en tu entorno de trabajo

cv2.imwrite (‘image color.jpg’,img)
cvZ2.imwrite (‘image gray.jpg’,img gray)
cv2.imwrite (‘image bw.jpg’,img bw)

Paso 6: conversion de RGB a HSV

H, S, V = cv2.split(cv2.cvtColor (img, cv2.COLOR RGB2HSV))

cv2_ imshow (H)

Figura 77.Imagen canal H — foto playa.

cv2 imshow (S)

Figura 78.1magen canal S — foto playa.

cv2_ imshow (V)

Figura 79. Imagen canal V — foto playa.
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Hasta este punto, ya sabemos cémo leer imagenes con la libreria OpenCV, convertir
una imagen a color en una imagen a escala de grises y BW, y convertir del espacio
de color RGB a HSV. Puedes ampliar la informacion de conversién de espacios de
color en la documentacién de OpenCV de cv2.cvtColor®.

6.4. ECUALIZACION DE IMAGENES

{Alguna vez te ha pasado que tomas una foto con poca luz y la imagen te quedo muy
oscura! ;Sabes como funcionan los ajustes de brillo en los celulares, por ejemplo,
para aclarar fotos oscuras? jEso lo aprenderas en esta seccién y adios a borrar fotos
porque quedaron muy oscuras!

Lo primero que debemos conocer es el concepto de histograma de una imagen y
como calcularlo y graficarlo en lenguaje Python. Pues bueno, la definicion general
del histograma es que es una representacion grafica de la ocurrencia de los datos.
En el caso de imagenes, el histograma muestra cuantos pixeles de la imagen tienen
color 0, cuantos tienen color |,y asi sucesivamente hasta cuantos pixeles tienen co-
lor 255 (en imagenes a escala de grises). En el caso de imagenes a color, presentara
la cantidad de pixeles para cada uno de los 256 niveles de color por banda, es decir,
es necesario dibujar tres histogramas, uno para la banda R, otro para la banda G,y
otro para la banda B. Si la imagen es BW, entonces el histograma solamente tendra
dos niveles de color, el 0 correspondiente al negro,y el | correspondiente al blanco.

A continuacion, se presentan los pasos.

Paso I: Lectura de la imagen a color

import cv2
img = cv2.imread(“/content/Fig80.Jjpg”)

Y obtengo esta hermosa imagen. Si, ya sé que esta un poco oscura, pero mas ade-
lante aprenderemos a aclararla.

Figura 80.1magen a color — foto mar. Fuente: repositorio personal de los autores.

6 https://opencv24-python-tutorials.readthedocs.io/en/stable/py_tutorials/py_imgproc/py_colorspaces/py_colorspaces.html
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Por ahora, vamos a conocer el tamano de la imagen con img. shape. El resultado
es (4032, 3024, 3. Es decir que, nuestra imagen tiene 4032 filas, 3024 columnas y 3
bandas de color (por defecto en el espacio BGR). El total de pixeles de la imagen es
4032 x 3024, que es igual a 12,192,768. En términos de bytes, el total se calcula asi:
4032 x 3024 x 3, que es igual a 36,578,304, dado que en cada banda de color un pixel
tiene |B,y la imagen tiene tres bandas de color.Ahora, te preguntaras si ese tamano
que acabamos de encontrar es el mismo que te aparece en tu PC en relacién con
esa imagen, y si revisas te daras cuenta de que solo pesa 1,54 KB. La diferencia entre
el calculo que acabamos de realizar y el peso real de la imagen radica en su tipo de
formato, (en este caso es *.jpg), el cual es un formato de compresion de imagenes
que reduce su peso, pero conserva su resolucion espacial. Si la imagen estuviese en
formato bmp de 24 bits, el espacio en disco seria el calculado previamente (alrede-
dor de 36 MB).

Para facilitar la visualizacion de la imagen en Colaboratory, vamos a realizar un pro-
ceso de redimensionamiento de la imagen, para que quede de tamano 400 filas y 300
columnas, para ello utilizaremos el siguiente codigo:

Paso 2: Redimensionamiento de la imagen

img=cv2.resize (img, (300, 400), interpolation = cv2.INTER AREA)

Ten en cuenta que primero incluimos la cantidad de columnas que deseamos que
la imagen tenga, y después la cantidad de filas. Entonces, la cantidad de pixeles por
banda es ahora de 400 x 300, que es igual a 120,000. El siguiente paso, es convertir
la imagen a escala de grises.

Paso 3: Conversion imagen a color en escala de grises

img gray=cv2.cvtColor (img, cv2.COLOR RGB2GRAY)

cv2_imshow (img gray)

Obteniendo esta imagen:

Figura 81.Imagen a escala de grises — foto mar.
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Bueno, ahora si, vamos a dibujar nuestro histograma y a mejorar la apariencia de la
imagen.

Paso 4: Histograma de la imagen a escala de grises

import matplotlib.pyplot as plt

pixels=img gray.shape[0]*img gray.shape[l]

print (‘la cantidad de pixeles de la imagen es:’, pixels)
hist = cv2.calcHist ([img gray], [0],None, [256], [0,256])
plt.plot (hist)

plt.show ()

Obteniendo el siguiente resultado:

la cantidad de pixeles de la imagen es: 120000

Figura 82. Histograma de la imagen a escala de grises — foto mar.

A partir del histograma se identifica que la imagen esta altamente concentrada en
intensidades de pixel alrededor de 60 (en escala 0 a 255), y que existen muy pocos
pixeles con intensidades superiores a 128 (mitad de escala). Esto es coherente con
la “apariencia oscura” de la imagen.

A continuacion, mejoraremos la apariencia de la imagen a escala de grises.

Paso 5: Ecudlizacion del histograma de la imagen a escala de grises

img gray eq = cv2Z.equalizeHist (img gray)
cv2 imshow (img gray eq)

Como resultamos, obtenemos:

Figura 83.Imagen ecualizada a escala de grises — foto mar.
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Si comparas esta imagen con la imagen a escala de grises original (Paso 3), notaras
una gran diferencia. Es mas clara. ;Cémo crees entonces que es el histograma de
la imagen ecualizada?

Paso 6: Histograma de la imagen a escala de grises ecualizada

hist2 = cv2.calcHist ([img gray eqgl, [0],None, [256], [0,256])
plt.plot (hist2)

Figura 84. Histograma de la imagen ecualizada a escala de grises — foto mar.

Este histograma es significativamente diferente al obtenido en el Paso 4. Ahora, una
gran parte de los pixeles de la imagen tienen niveles de color mayores a 128, y, por
lo tanto, la imagen tiene una apariencia clara. Por otro lado, es tipico en los histogra-
mas ecualizados que se tengan numerosos picos de ocurrencia, y que no se tengan
curvas suavizadas como en los histogramas de imagenes naturales (sin ecualizar).

A continuacion, dibujaremos el histograma por banda de color y ecualizaremos la
imagen a color.

Paso 7: Histograma de la imagen a color (histograma por cada banda de color)

img RGB=cv2.cvtColor (img, cv2.COLOR BGR2RGB)

color = (‘r’,’g’,'b’") -

for i,col in enumerate (color) :
histr = cv2.calcHist ([img RGB], [i],None, [256], [0,256])
plt.plot (histr,color = col)
plt.xlim([0,256])

plt.show ()

En este punto es pertinente explicar que cuando leemos imagenes con OpenCV, las
bandas de color quedan en orden contrario al del espacio RGB. Es decir, primero la
banda B (azul), después la banda G (verde), y finalmente, la banda R (roja). Por ello, se
hace necesario convertir de BGR a RGB, y posteriormente dibujar el histograma de
cada una de las bandas (se puede realizar en graficas independientes, o en la misma
grafica como con este c6digo).

El histograma que obtenemos es:
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Figura 85. Histograma por banda de la imagen a color — foto mar.

Cada histograma se ha dibujado con el color correspondiente a su banda. El his-
tograma de la banda roja tiene la mayor parte de sus pixeles por debajo del color
50. El histograma de la banda verde tiene la mayor parte de sus pixeles con color
cercano a 50. Mientras que, el histograma de la banda azul tiene dos zonas de color
que sobresalen, alrededor de 50 y alrededor de 100, esta ultima con mayor cantidad
de pixeles. Aunque los histogramas son diferentes entre si, tienen en comun que en
los tres casos la cantidad de pixeles por encima del color 128 es practicamente cero.

Paso 8: Ecudlizacion del histograma de la imagen a color

H, S, V = cv2.split(cv2.cvtColor (img, cv2.COLOR RGB2HSV) )

V_equ = cvZ2.equalizeHist (V)

img equ = cv2.cvtColor(cv2.merge ([H, S, V_equ]), cv2.COLOR HSV2RGB)
cv2_ imshow (img equ)

El proceso de ecualizacion de la imagen lo realizaremos en la banda V del espacio
de color HSV. Para lo cual, primero convertiremos la imagen de RGB a HSV, poste-
riormente realizaremos un split en las tres bandas, para asi ecualizar Unicamente la
bandaV. Finalmente, volvemos a unir las tres bandas del espacio HSV (con la bandaV
ecualizada), y convertimos de HSV a RGB. La imagen a color ecualizada es:

Figura 86. Imagen ecualizada a color — foto mar.
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Mejoro con relacién a la imagen del Paso 1, jcierto? Bueno, ya has aprendido un
concepto de procesamiento de imagenes que tiene una aplicacion practica. Cuando
vuelvas a cambiar el brillo de una imagen, recuerda que lo que estas haciendo es un
proceso de ecualizacion de su histograma.

Espero que te haya gustado esta tematica. Si quieres ampliar la informacion de histo-
gramas en OpenCV, te invito a consultar la documentacién de la libreria’.

6.5. RUIDO EN IMAGENES

En esta seccion aprenderemos a reconocer tres tipos diferentes de ruido presen-
tes en imagenes: guassiano (gaussian), uniforme (uniform), y sal y pimienta (salt and

pepper).
6.5.1. Ruido gaussiano:

Este ruido se caracteriza porque su distribucion (histograma) tiene la forma de una
campana de gauss, en la que existe un valor central (con gran parte de los pixeles del
ruido), y pocos pixeles en los colores extremos. La forma y comportamiento esta
definida por el promedio y la varianza. Si la varianza es baja, la campana de gauss es
angosta; mientras que, si la varianza es alta, la campana de gauss es ancha. El prome-
dio es el valor central de la campana.

Vamos ahora a generar este tipo de ruido para adicionarlo a una imagen a color y
visualizar su efecto. Para ello utilizaremos el siguiente codigo en Python:

import cv2

import numpy as np

from google.colab.patches import cv2 imshow

img = cv2.imread (“/content/Fig89.ipg”)

noise = np.zeros((img.shape[0], img.shape[l]),dtype=np.uint8)
gaussian noise = np.zeros((img.shape[0], img.shape[l], img.sha-
pel2]),dtype=np.uint8)

gaussian noise([:,:,0]=cv2.randn(noise, 128, 30)
gaussian noisef[:,:,1]=cv2.randn(noise, 128, 30)
gaussian noise([:,:,2]=cv2.randn(noise, 128, 30)

cv2_ imshow (gaussian noise)

Lo primero que hacemos es crear una matriz de ceros del mismo tamano de la
imagen a la cual le adicionaremos el ruido. Posteriormente, con la instruccion
cv2.randn® vamos a generar ruido gaussiano. Debemos seleccionar el valor
central de la distribucion gaussiana (i), y la desviacion estandar (o); para nuestro
caso u = 128, y o = 30. Este ruido gaussiano lo creamos para cada una de las
bandas a color (banda 0, banda | y banda 2, de gaussian_noise). El resultado se
presenta a continuacion:

7  https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_histograms/py_ta-
ble_of_contents_histograms/py_table_of_contents_histograms.html#table-of-content-histograms
8 https://docs.opencv.org/4.5.3/d2/de8/group__core__array.html#tgaeff1f61e972d133a04ce3a5f81cf6808
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Figura 87. Imagen a color — ruido gaussiano.

Para verificar que el ruido obtenido es de tipo gaussiano, utilizamos el siguiente

codigo:

import matplotlib.pyplot as plt
# repetir este paso por canal
hist = cv2.calcHist ([gaussian noise], [0],None, [256], [0,256])
plt.plot (hist)
plt.show ()
@) (b) ()

Figura 88. Histograma por banda de la imagen a color — ruido gaussiano.

Se verifica que los histogramas de la Figura 88 de cada uno de los canales, efectiva-
mente tienen forma de campana de gauss.

Como siguiente paso, leemos una imagen en Colaboratory?’:

img = cv2.imread(“/content/Fig89.jpg”)
img.shape

img=cv2.resize (img, (640, 480),
cv2_ imshow (img)

interpolation = cv2.INTER AREA)

Figura 89. Imagen a color — villa de leyva. Fuente: repositorio personal de los autores.

9 Esta imagen hace parte del repositorio personal del autor de este libro
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Y adicionamos el ruido que previamente hemos creado, asi:

noisy img gn = cv2.add(img, (gaussian noise*0.5).astype(np.uint8))
cv2_ imshow (noisy img gn)

El ruido gaussiano se multiplica por 0.5 para no saturar a la imagen, y se convierte en
formato entero de 8 bits con astype (np.uint8). Posteriormente, se adiciona
a la imagen a color con la instruccion cv2 . add, obteniendo el siguiente resultado:

Figura 90.1magen a color con ruido gaussiano — villa de leyva.

iCual es el efecto de este tipo de ruido en la imagen?

Rta: La foto luce “envejecida”.

6.5.2. Ruido uniforme:

Otro ruido tipico en imagenes es el ruido uniforme.A diferencia del ruido anterior,
este tiene una distribucion uniforme de sus colores, es decir que no existe un color
central, sino que todos los colores (o tonos) tienen la misma cantidad de pixeles (o
aproximadamente la misma cantidad).

El procedimiento para crear este tipo de ruido es similar al caso anterior. Debemos
crear una matriz de ceros del mismo tamano de la imagen, y posteriormente para
cada una de las bandas de color creamos el ruido. Soélo que en este caso utilizamos
la instruccion cv2 . randu, en lugar de cv2 . randn. Podemos utilizar el siguiente
codigo en Python:

noise = np.zeros((img.shape[0], img.shape[l]),dtype=np.uint8)
uniform noise = np.zeros((img.shape[0], img.shape[l], img.sha-
pel2]),dtype=np.uint8)

uniform noisel[:,:,0]=cv2.randu(noise, 0, 256)

uniform noisel[:,:,1]=cv2.randu(noise, 0, 256)
uniform:noise[:,:,2J=cv2.randu(noise, 0, 256)

cv2_ imshow (uniform noise)

Obteniendo el siguiente resultado:
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Figura 91. Imagen a color — ruido uniforme.

Como siguiente paso dibujamos el histograma, banda a banda, asi:

# repetir este paso por canal
hist = cv2.calcHist ([uniform noise], [0],None, [256], [0,256])
plt.plot (hist)
plt.show ()
Obteniendo:
@) (b) (©)

Figura 92. Histograma por banda de la imagen a color — ruido uniforme.

Aunque el histograma que obtenemos no tiene una perfecta distribucién uniforme,
la cantidad de pixeles para cada uno de los tonos (0 a 255) es muy similar entre
si. Para el tamano de imagen que hemos utilizado en este ejemplo, la cantidad de
pixeles por canal es 480 x 640 = 307.200. Esta cantidad de pixeles dividido en los
256 tonos es igual a 1.200. Si se revisa con detalle los histogramas, precisamente las
ocurrencias oscilan alrededor de ese valor.

Finalmente, adicionamos el ruido a la imagen a color, con el siguiente cédigo en
Python:

noisy img un = cv2.add(img, (uniform noise*0.5).astype(np.uint8))
cv2 imshow(noisy img un)

Cuyo resultado es:
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Figura 93. Imagen a color con ruido uniforme — villa de leyva.

{En qué se diferencia esta imagen de la obtenida al adicionar el
ruido gaussiano?

Rta: aparte de envejecida, tienen pequenos “granulos” o “puntos
de arena” en toda la imagen. El efecto es notorio en zonas am-
plias y de pocos detalles, como el cielo o las nubes.

6.5.3. Ruido sal y pimienta:

Este tipo de ruido tiene dos tonos, uno correspondiente a la sal y el otro a la pi-
mienta. Para crear ruido de este tipo, lo primero que debemos hacer es crear ruido
uniforme para cada una de las bandas de color, y posteriormente aplicar un proceso
de umbralizacion (similar al que utilizamos cuando convertimos una imagen a escala
de grises en una imagen BW). Dependiendo del valor del umbral seleccionado, ten-
dremos mas o menos pixeles correspondientes a sal y a pimienta.

Para el siguiente codigo en Python el umbral seleccionado es 10,y a los pixeles que
superen el umbral se les asigna el color 255 (maxima escala).

sp_noise=np.zeros ((img.shape([0], img.shape[l], img.shape[2]),d-
type=np.uint8)

ret,impulse noisel=cv2.threshold(uniform noise[:,:,0],10,255,cv2.
THRESH BINARY)

ret,impulse noisel=cv2.threshold(uniform noise[:,:,1],10,255,cv2.
THRESH BINARY)

ret,impulse noise2=cv2.threshold(uniform noise[:,:,2],10,255,cv2.
THRESH BINARY)

sp noisel:,:,0]=impulse noise0

sp_noise[:,:,1]=impulse noisel

sp noisel:,:,2]=impulse noise2

cv2_ imshow (sp noise[:,:,0])

iEn este caso obtendremos poca pimienta y mucha sal!
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Figura 94.1magen a color con ruido sal y pimienta, con th = 10.

Y sus histogramas por banda, son:

# repetir este paso por canal

hist = cv2.calcHist ([sp noisel], [2],None, [256],[0,256])
plt.plot (hist) -

plt.show ()

Obteniendo:

(@) (b) ()
Figura 95. Histograma por banda de la imagen a color — ruido sal y pimienta con th = 10.

Ahora, vamos a fijar un umbral alto, por ejemplo, de 200:

sp_noise=np.zeros ((img.shape[0], img.shape[l], img.shape[2]),d-
type=np.uint8)

ret, impulse noise(O=cv2.threshold(uniform noisef[:,:,0],200,255, -
CV2.THRESH_BINARY)

ret, impulse noisel=cv2.threshold(uniform noisef[:,:,1],200,255, -
CV2.THRESH_BINARY)

ret, impulse noise2=cv2.threshold(uniform noisel[:,:,2],200,255, -
CV2.THRESH_BINARY)

sp_noise[:,:,0]=impulse noiseO

sp_noise[:,:,1]=impulse noisel

sp_noise[:,:,2]=impulse noise2

cv2_ imshow (sp noise[:,:,0])

iEn este caso obtendremos poca sal y mucha pimiental!
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Figura 96.1magen a color con ruido sal y pimienta, con th = 200.

Y sus histogramas, son:

@) (b) ()
Figura 97. Histograma por banda de la imagen a color — ruido sal y pimienta con th = 200.

Y finalmente adicionamos este ruido a la imagen, asi:

noisy img sp = cv2.add(img, (sp_noise*0.5) .astype(np.uint8))

cv2_imshow(noisy img sp)

Figura 98. Imagen a color con ruido sal y pimienta, th = 200 — villa de leyva.

{En qué se diferencia esta imagen de la obtenida al adicionar el
ruido uniforme?

Rta: es mucho mas notorio el efecto granular que en la imagen
con ruido uniforme.
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6.6. FILTROS ESPACIALES

En esta seccion entenderemos y aplicaremos el concepto de filtro espacial. Mate-
maticamente lo abordaremos en la Seccion 6.7, pero por ahora, de forma concep-
tual y practica realizaremos el filtrado de ruido en imagenes.

Lo primero que vamos a realizar es comparar el efecto que tiene en una imagen
los tres diferentes tipos de ruido que se explicaron en la Seccién 6.5. La Figura 99
presenta un ejemplo.

(2) (b) (c)

Figura 99. Imagen de playa con tres tipos distintos de ruido: (a) sal y pimienta, (b) guassia-
no, (c) uniforme. Fuente: repositorio personal de los autores.

Pero, jcomo las diferenciamos!?

*  Empecemos con la imagen central, el efecto que tiene es de
“envejecida”, entonces esa imagen contiene ruido gaussiano.

*  Ahora, comparemos las imagenes de los extremos, ambas
tienen un efecto “granular”. La imagen de la izquierda tiene
ruido sal y pimienta, por ser mas evidente el efecto granular;
mientras que, la de la derecha tiene ruido uniforme.

A continuacion, por medio de ejemplos se ilustrara el efecto que tienen diferentes
filtros espaciales en imagenes con diferentes tipos de ruido.

Empezaremos con la imagen que tienen ruido sal y pimienta, a la cual le aplicamos
un filtro tipo promedio. Este filtro 2D es similar al filtro de promedio 1D que cono-
cimos al inicio de este libro, pero en este caso es una matriz con todos sus valores
iguales a uno dividido en su tamano (igual a filas x columnas). Por ejemplo, si el ta-
mano del filtro es (5 x 5), entonces cada posicion del filtro tendra el peso de 1/25,
como se presenta en la siguiente Figura.

Figura 100. Filtro de promedio (5 x 5).
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Una vez hemos leido la imagen en Python, aplicamos el filtro con el siguiente cédigo:

fl sp = cv2.blur(noisy img sp, (5,5), 0)
cv2 imshow (fl sp)

Este filtro lo aplicamos a la imagen denominada noisy_img_sp, cuyo resultado es la
imagen fl_sp, la cual se presenta a continuacion.

Figura 101.1magen filtrada con filtro de promedio — ruido sal y pimienta.

El segundo tipo de filtro que vamos a evaluar es el filtro gausisano. En este caso, los
valores de la matriz varian entre si, teniendo mayor peso la posicién central del fil-
tro,y de menor peso las posiciones de los extremos. En este tipo de filtro los pesos
decrecen de forma gaussiana a medida que se alejan de la posicion central, como se
presenta en la siguiente figura:

Figura 102. Filtro gaussiano (5 x 5). Se ha encerrado en un recuadro rojo la posicién
central del filtro.

Para el filtro gausisano se utiliza el siguiente codigo en Python:

f2 sp = cv2.GaussianBlur(noisy img sp, (5,5), 0)
cv2_ imshow (f2_ sp)

Cuyo tamano del filtro es también (5 x 5),y la salida en este caso se denomina f2_sp.
La imagen filtrada se presenta a continuacion:
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Figura 103.Imagen filtrada con filtro de gaussiano — ruido sal y pimienta.

Finalmente, filtraremos la imagen con un filtro de mediana (no confundir con el
filtro de promedio). Este tipo de filtro difiere a los dos anteriores en que no existe
una matriz de pesos del filtro. Se realiza un proceso de ordenamiento de los valores
de los pixeles de la imagen de una region de igual tamano al del filtro, y se selecciona
el valor correspondiente a la posicion central de los pixeles ordenados.

El cédigo en Python es:

f3 sp = cv2.medianBlur (noisy img sp, 5)

cv2_ imshow (£3_sp)

La imagen filtrada corresponde a f3_sp, como se presenta en la siguiente figura.

Figura 104.Imagen filtrada con filtro de mediana — ruido sal y pimienta.

La forma en que cada uno de estos filtros opera sobre la imagen, se explicara en
detalle en la Seccion 6.7.

Por ahora, quiero que respondas la siguiente pregunta.

iCual imagen filtrada consideras que presenta mejor calidad?,
es decir, ;qué filtro seleccionarias para eliminar ruido tipo sal y
pimienta?

Rta: Para este tipo de ruido, el filtro de mediana es la mejor
opcion.
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En la segunda parte de esta seccion, buscaremos un filtro para una imagen que
contiene ruido tipo gaussiano. Partiremos con el filtro de promedio (Figura 72), y
seguiremos con otro tipo de filtro denominado filtro bilateral (Figura 73).

Figura 105. Imagen filtrada con filtro de promedio — ruido gaussiano.

El filtro bilateral tiene en cuenta tres parametros para calcular el valor de salida:
diametro de la vecindad (d), varianza a nivel de color (o,,,,), Y varianza a nivel de
ubicacion espacial (0pqce)-

e d es el diametro de cada vecindad de pixeles. Si es negativo, se calcula a
partir de 0, qc-

Cuando o, es alto, entonces, los colores mas alejados dentro de la
vecindad se mezclan, obteniendo largas areas de color casi-homogéneo.
Cuando 0y, es alto, entonces, los pixeles mas alejados entre si se mez-
clan (espacialmente hablando).

Este tipo de filtro es similar al filtro gaussiano, en términos de la cercania en ubica-
cion espacial, pero incluye el concepto de cercania de color también.

El siguiente es el cédigo en Python para el filtro bilateral con d =9, o, = 10,
Ospace = 10

blurl = cv2.bilateralFilter (noisy img sp,15,50,100)
cv2_ imshow (blurl)

Figura 106. Imagen filtrada con filtro bilateral — ruido gaussiano.
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{Cual imagen filtrada consideras que presenta mejor calidad?,
es decir, ;Qué filtro seleccionarias para eliminar ruido tipo gaus-
sinoal’

Rta: Para este tipo de ruido, el filtro bilateral es la mejor opcion.

Puedes complementar la informacion de los filtros espaciales de esta seccion en
https://docs.opencv.org/4.x/d4/d | 3/tutorial_py_filtering.html

6.7. CONVOLUCION

En esta seccion comprenderemos el concepto de “convolucion” en imagenes. Estric-
tamente hablando, realmente realizaremos una operacion de correlacion entre un fil-
tro y una imagen, pero, teniendo en cuenta que, en la comunidad académica de vision
por computador y de aprendizaje profundo el nombre utilizado para esa operacion
es el de convolucién, utilizaremos ese nombre en este libro.

Lo primero a tener en cuenta es que la convolucién es una operacion que requiere
dos matrices, una de las cuales es la imagen, y la otra es el filtro. Tipicamente, los
filtros tienen la misma cantidad de filas que de columnas, por ejemplo, de 3 x 3, pero
se podrian disefar filtros con dimensiones que no sean iguales entre si. Cada una
de las posiciones del filtro se denominan “pesos”. Conceptualmente, el filtro debe
tener una dimension menor a la de la imagen para poder realizar un proceso de
“barrido” sobre ella.

Con un ejemplo ilustraremos el proceso:

Figura 107.1magen y filtro para operacion de convolucion.

El primero paso consiste en adicionarle un borde a la imagen con valores de ceros,
ampliando su dimension en 2 filas y dos columnas. Es decir, para nuestra Imagen de
ejemplo, la cual es de (5 x 5), al incluirle el borde quedara de (7 x 7).

Figura 108.Imagen de entrada con borde.
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El propésito de adicionarle el borde a la Imagen de entrada es que el resultado de la
convolucion (Imagen filtrada) contenga la misma cantidad de filas y de columnas que
de la Imagen de entrada. Cuando el tamano del filtro es de 3 x 3, el borde es de 2
filas (una superior y una inferior) y dos columnas (una a la izquierda y una a la dere-
cha); cuando el filtro es de tamano 5x5, el borde es de 4 filas (dos superiores y dos
inferiores) y 4 columnas (dos a la derecha y dos a la izquierda), y asi sucesivamente.

Como segundo paso, el filtro se superpone sobre la Imagen de entrada, ubicandolo
en el extremo superior izquierdo. Posteriormente, se realiza la multiplicacion de los
pixeles de la Imagen con los pesos del filtro. Si el filtro es de tamafno 3 x 3, entonces
se realizan 9 multiplicaciones. Finalmente, se suma el resultado de las multiplicacio-
nes, y el valor obtenido se asigna al primer pixel de la imagen (primera fila, primera
columna). Hay que tener en cuenta que, si el resultado de la operacion anterior es
negativo, se escribe un cero en el pixel de salida correspondiente. Por otro lado, si
el resultado es superior a 255, se escribe 255.

El proceso se presenta a continuacién:

Figura 109. Proceso de convolucion: Paso 2. Se sombrea en amarillo el pixel central de la
imagen, para el paso correspondiente.

Como tercer paso, el filtro se desplaza una posicion a la derecha, y se repite de nue-
vo el proceso de realizar las multiplicaciones, sumar su resultado y asignar al pixel
correspondiente de la imagen de salida (primera fila, segunda columna). El proceso
se presenta en la siguiente figura.
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Figura 110. Proceso de convolucién: paso 3.Se sombrea en amarillo el pixel central de la
imagen, para el paso correspondiente.

Como cuarto paso, y asi sucesivamente, se desplaza de nuevo el filtro una posicion
a la derecha, se realizan las correspondientes multiplicaciones, se suman sus valores
y se asigna al pixel de la imagen de salida que corresponda. Una vez el filtro se des-
plaza y llega al borde de la imagen, debe desplazarse de nuevo, empezando por la
segunda fila de la imagen, primera columna. El proceso de desplazamiento se realiza
de forma iterativa, hasta que se recorra por completo a la imagen de entrada. La
ubicacion del pixel central para cada uno de los pasos del proceso de convolucion y
la direccion del desplazamiento se presentan a continuacion:

0|0 0 0

o 1] 30 30

L0} o307 | 30

|30 30

ol te+30 | 30

10 | 10307 30

=] =] [=1 =] =] =] =]
=

shshshs s bs| =

= = = [=] =] = =

0|0 0 0

Figura 111.Pixel central en el proceso de convolucién: barrido de la imagen de izquierda a
derecha, y de arriba abajo.

Para el presente ejemplo, el resultado de la convolucion es:
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Figura 112. Imagen filtrada.

Para saber cual es el tamano del borde a adicionarle a la imagen, utilizaremos las
siguientes ecuaciones:

W,=Ww- W +1 Ecuacion 50
H=H-H+1 Ecuacion 51

Donde W , W,, W, corresponden a la cantidad de columnas de la imagen de entra-
da con borde, del filtro y de la imagen filtrada (output), respectivamente. Mientras
que, H,H, H , corresponden a la cantidad de filas de la imagen de entrada con borde,
del filtro y de la imagen filtrada, respectivamente.

Entonces, si queremos que la imagen de salida tenga 5 x 5 y estamos utilizando un
filtro de 3 x 3, necesitamos que la imagen de entrada con borde sea de 7 x 7, tenien-
do en cuenta que al reemplazar los valores anteriores en la ecuacion 50 o ecuacion
51, tenemos que 5 =7- 3+1.A la imagen de entrada sin borde (cuyas dimensiones
son iguales a la de la imagen de salida), debemos adicionarle 2 filas y 2 columnas, o,
en otras palabras, un borde de | rodeando a la imagen.

6.8. DETECCION DE BORDES

En esta subseccion abordaremos el tema de deteccion de bordes en imagenes. Lo
primero, es saber que, asi como existen filtros cuyo propésito consiste en reducir el
ruido de una imagen (como los vistos en el Capitulo 6.6.), también tenemos filtros
cuyo objetivo es detectar el borde de una imagen. Mientras los primeros cumplen
que la sumatoria de sus pesos es igual a |, en los segundos (deteccién de bordes) se
cumple que la sumatoria de sus pesos es igual a 0.

Adicionalmente, se pueden detectar bordes en una sola direccién o multi-direccion.
Dentro de los filtros mas conocidos en la literatura tenemos Prewitt, Sobel y Lapla-
ciano.Y como algoritmo de deteccion de bordes (que incluye etapa de pre-procesa-
miento, filtrado y pos-procesamiento), tenemos el algoritmo Canny'°.

Empecemos con el filtro Prewitt. Es una clase de detector de bordes aplicando la
diferencia entre pixeles de primer orden. Puede detectar bordes en el eje horizon-

10 Oztiirk, S., & Akdemir, B. (2015). Comparison of edge detection algorithms for texture analysis on glass pro-
duction. Procedia-Social and Behavioral Sciences, 195, 2675-2682.
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tal o en el eje vertical. Este filtro utiliza un tamano de 3x3, donde la fila o columna
central son de valor 0,y las filas o columnas de los extremos son de valor | y -1.A
continuacion, se presenta el filtro Prewitt para cada direccion de deteccién de borde.

Figura 1 13.Filtro Prewitt (3 x 3).

En el caso del filtro Sobel, también se detectan bordes en la direccion vertical y
horizontal, pero en este caso, se realiza un énfasis en el pixel central de las filas o
columnas cuyos pesos son distintos de cero, realizando una deteccion mas fuerte
de los cambios de la imagen utilizando la primera derivada. En la siguiente figura se
presenta el filtro Sobel.

Figura 1 14.Filtro Sobel (3 x 3).

Por otro lado, el filtro Laplaciano se basa en la segunda derivada de la imagen (o dife-
rencia de segundo orden)''. Existen dos versiones del filtro Laplaciano, en la primera,
se computa la diferencia entre el pixel central y el promedio de sus vecinos directos
(arriba, abajo, izquierda, derecha), y en la segunda, se computa la diferencia entre el
pixel central y el promedio de todos sus vecinos (incluidas las esquinas). La version
basica y la alternativa se presentan a continuacion'?,

Figura 1 15.Filtro Laplaciano (3 x 3).

Finalmente, tenemos el algoritmo o filtro Canny, el cual realiza varias etapas, las
cuales se resumen a continuacion'¥'%:

11 https://www.sciencedirect.com/topics/engineering/laplacian-filter.

12 Nixon, M. S., & Aguado, A. S. (2008). Low-level feature extraction (including edge detection). Feature Extrac-
tion and Image Processing. 3rd edi. Linacre House/Jordan Hill/Oxford: Elsevier, 115-79.

13 https://docs.opencv.org/4.x/da/d22/tutorial canny.html

14 https://docs.opencv.org/3.4/da/d5c/tutorial_canny_detector.html
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Reduccion de ruido: es una etapa de pre-procesamiento que consiste en
reducir el ruido presente en la imagen, por medio de un filtro Gaussiano
de tamano 5 x 5.

Identificacion del gradiente de intensidad de la imagen: se filtra la imagen
obtenida en el paso anterior tanto con un filtro Sobel de deteccion de
bordes horizontales,como de deteccion de bordes verticales, obteniendo
G,y G, respectivamente.A partir de las dos imagenes resultantes (una
por cada filtro Sobel), se calcula la imagen gradiente, tanto en magnitud
como en fase, aplicando las siguientes ecuaciones:

|G| = \/Gx + Gy Ecuacion 52

G
4=tg! ( y/ GX) Ecuacion 53

La direccién del gradiente siempre es perpendicular a los bordes. Se aproxima a
uno de los cuatro posibles angulos: horizontal, vertical, diagonal derecha, diagonal

izquierda.

C.

Supresion de los no maximos: esta etapa y la siguiente hacen parte del
pos-procesamiento. Consiste en remover los pixeles no deseados, que no
correspondan con el borde de la imagen. Si existen varios pixeles vecinos
en la direccion del gradiente que son potenciales bordes, se identifica
cudl de ellos es un maximo local, y ese es el pixel que se conversa para la
siguiente etapa del algoritmo.

Umbralizacion con histéresis: en esta Ultima fase se eliminan falsos bor-
des, a partir de un proceso de histéresis con dos umbrales. Se define un
umbral alto y un umbral bajo. Si el potencial borde supera al umbral alto,
entonces se considera un borde real. Si, por el contrario, es menor que
el umbral bajo, se descarta. Para los potenciales bordes cuya intensidad
se encuentra entre el umbral bajo y el umbral alto, la decisién de incluir-
se como un verdadero borde o de eliminarse depende de sus pixeles
vecinos. Si éstos son bordes, se considera también como borde; en caso
contrario, se descarta.

Una de las ventajas del algoritmo Canny es que detecta de forma simultanea bordes
en cuatro direcciones (vertical, horizontal, diagonal derecha y diagonal izquierda).
Adicionalmente, el borde detectado es delgado, gracias a sus etapas de pos-proce-
samiento posteriores al filtrado (supresion de los no-maximos y umbralizacion con
histéresis).

A continuacion, aplicaremos los filtros anteriores a una imagen, para comparar las
diferencias de forma visual entre los bordes detectados en cada caso.



PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON |1 35|

import cv2

import numpy as np

from google.colab.patches import cv2 imshow
img = cv2.imread(‘coctel.jpg’)

cv2_imshow (img)

prewitt x = np.array([[1l, 1, 11,
B [0, o, o1,
(-1, -1, -111, dtype=np.float32)
print (prewitt x )

figl= cv2.filter2D(img, -1, prewitt x, borderType=0)
cv2_ imshow (figl)

figlg = cv2.cvtColor (figl, cv2.COLOR BGR2GRAY )
ret, figlbw = cv2.threshold(figlg,50,255,cv2.THRESH BINARY)
cv2 imshow (255-figlbw) # imagen filtrada con Prewitt x

prewitt y = np.array([[1, 0, ~-1],

[11 Or _1]1

[1, 0, =111, dtype=np.float32)
print (prewitt y )

fig2= cv2.filter2D(img, -1, prewitt y, borderType=0)
cv2_imshow (fig2)

fig2g = cv2.cvtColor (fig2, cv2.COLOR BGR2GRAY )
ret, fig2bw = cv2.threshold (fig2g,50,255,cv2.THRESH BINARY)
cv2_imshow (255-fig2bw) # imagen filtrada con Prewitt y

fig3bw = figlbw + fig2bw
cv2_imshow (255-fig3bw) # imagen filtrada con Prewitt x + Prewitt y

sobel x = np.array

[
1, -2, -111, dtype=np.float32)
print (sobel x )

figd= cv2.filter2D(img, -1, sobel x, borderType=0)
cv2_ imshow (fig4)

figdg = cv2.cvtColor (figd, cv2.COLOR BGR2GRAY )

ret, figdbw = cv2.threshold(figdg, 50,255, cv2.THRESH BINARY) # imagen
filtrada con Sobel x

cv2_imshow (255-figdbw)

sobel y = np.array ([
[2
[1

[11 Or _l]l
14 Or _2]1
, 0, =111, dtype=np.float32)

print (sobel y )

figh= cv2.filter2D(img, -1, sobel y, borderType=0)
cv2_imshow (fig5)

figbg = cv2.cvtColor (figh, cv2.COLOR BGR2GRAY )
ret, fighbw = cv2.threshold (figbg, 50,255,cv2.THRESH BINARY) # imagen
filtrada con Prewitt y -
cv2_ imshow (255-figSbw)
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figbbw = figdbw + figbbw
cv2 imshow (255-fig6bw) # imagen filtrada con Sobel x + Sobel y

laplacianol = np.array([[O0, -1, 01,

[711 4I 711/

[0, -1, 011, dtype=np.float32)
print (laplacianol)

fig7= cv2.filter2D(img, -1, laplacianol, borderType=0)
cv2_imshow (fig7)

fig7g = cv2.cvtColor (fig7, cv2.COLOR BGR2GRAY )
ret, fig7bw = cv2.threshold(fig7g,50,255,cv2.THRESH BINARY)
cv2_imshow (255-fig7bw) # imagen filtrada con Laplaciano basico

laplaciano2 = np.array([[-1, -1v -17,

[_11 8/ _1}1

[-1, -1, =111, dtype=np.float32)
print (laplaciano?2)

fig8= cv2.filter2D(img, -1, laplaciano2, borderType=0)
cv2 imshow (fig8)

fig8g = cv2.cvtColor (fig8, cv2.COLOR BGR2GRAY )
ret, fig8bw = cv2.threshold(fig8g,50,255,cv2.THRESH BINARY)
cv2 imshow (255-fig8bw) # imagen filtrada con Laplaciano alternativo

edges_canny = cv2.Canny (img,220,55)
cv2 imshow (255-edges canny) # imagen filtrada con algoritmo Canny

Empezaremos analizando las imagenes filtradas con Prewitt. La obtenida con Prewitt_x
detecta bordes especialmente en la direccién horizontal, como la altura de la bebida
dentro de la copa, o el soporte horizontal del techo del restaurante. En el caso de
la imagen filtrada con Prewitt_y, no se detectan los bordes mencionados anterior-
mente, pero si los bordes correspondientes a las columnas verticales de soporte del
techo. Finalmente, la imagen obtenida al sumar las dos anteriores es mas completa
que sus antecesoras por separado, mostrando bordes en ambas direcciones.

En el caso de las imagenes obtenidas con Sobel, los resultados son similares a las
obtenidas con Prewitt. Sin embargo, se puede apreciar mayor demarcacion en algu-
nos bordes.

Por otro lado, las imagenes obtenidas con el filtro Laplaciano (en sus dos versiones)
muestran el borde vertical de la copa, aunque es mas notorio con el Laplaciano al-
ternativo. En ambos casos, las imagenes filtradas tienen bordes delgados, a diferencia
de sus antecesoras.
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Figura 116. Imagen de entrada y deteccién de bordes con diferentes tipos de filtros.
Fuente: repositorio personal de los autores.

Finalmente, con el algoritmo Canny se tienen bordes delgados en todas las direc-
ciones, y aparecen bordes en zonas de la imagen que con los otros filtros no se
visualizaban, por ejemplo, las ondulaciones en el tejado.
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6.9. TRANSFORMADA DFTY DCT

En esta seccion se abordan dos transformadas en imagenes, del dominio espacial al
dominio frecuencial. Especificamente, las correspondientes con la Transformada de
Fourier Discreta (DFT) y la Transformada Consenoidal Discreta (DCT).

6.9.1. DFT (Discrete Fourier Transform)

La DFT de una imagen se calcula a partir de la siguiente ecuacion:

Teniendo en cuenta que,

Donde F(k,I) es la Transformada Discreta de Fourier, mientras que f(a,b) es la ima-
gen en el dominio espacial de tamano (M,N). Es decir, el resultado de la DFT se
obtiene al multiplicar la imagen en el dominio espacial f(a,b) por la funcién base (que
en este caso es una senal exponencial compleja) y sumar el resultado para cada
pareja (k,1). Se resalta que tanto los valores (a,b) como los valores (k,I) son enteros.

Cuando se grafica la DFT de una imagen, no se puede relacionar facilmente el resul-
tado obtenido con la imagen original. Tipicamente, si existen cambios significativos
de direccion en la imagen, éstos se veran reflejados en la DFT (patrones de lineas
blancas). Si la imagen se invierte en el eje vertical (flip vertical), el efecto que se tiene
en su DFT es precisamente el de inversion. De forma similar, si la imagen si invierte
respecto al aje horizontal (flip horizontal), también se tendra el efecto en su DFT de
inversion. En ambos casos, la inversion en la DFT es en relacién con el eje vertical, de
tal forma que la DFT de la imagen invertida horizontal es igual a la DFT de la imagen
invertida vertical. Por otro lado, si a la imagen se le aplica doble inversion (una por
cada eje), su DFT es igual al de la imagen original (sin invertir).

La Figura 84 presenta un ejemplo de una imagen y su correspondiente DFT para
diferentes tipos de manipulaciones de la imagen. Se resalta que la DFT de la imagen
original es igual a la DFT de doble flip; mientras que, la DFT de flip vertical es igual
a la DFT de flip horizontal.
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Figura I17.1magen con su respectiva DFT.
Para calcular la DFT de una imagen en Python, utilizamos el siguiente codigo:

Paso 1) Cargue de librerias de lectura de la imagen

import numpy as np

import cv2

from google.colab.patches import cv2 imshow
url= “/content/oficina.png” n

img = cv2.imread (url)

Paso 2) Convertir la imagen RGB a escala de grises y representarla en punto flo-
tante de 32 bits

img gray=cv2.cvtColor (img, cv2.COLOR BGR2GRAY)
cv2_imshow (img gray)
img float32 = np.float32 (img gray)

Paso 3) Calcular la DFT vy visualizar el resultado en escala logaritmica

dft = cv2.dft (img float32, flags = cv2.DFT COMPLEX OUTPUT)
dft _shift = np.fft.fftshift (dft

)
magnitude spectrum = 20*np.log(cv2.magnitude(dft shift[:,:,0],dft |
shift[:,:,11))

cv2 imshow (magnitude spectrum)
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Paso 4) Invertir la imagen en el eje vertical, calcular su DFT y graficar

flipVertical = cv2.flip(img float32, 1)

cv2 imshow (flipVertical)

dft = cv2.dft (flipVertical, flags = cv2.DFT COMPLEX OQUTPUT)

dft shift = np.fft.fftshift (dft) o o

magnitude spectrum = 20*np.log(cv2.magnitude (dft shift[:,:,0],dft |
shift[:,:,11))

cv2_ imshow (magnitude spectrum)

Paso 5) Invertir la imagen en el eje horizontal, calcular su DFT y graficar

flipHorizontal = cv2.flip(img float32, 0)

cv2 imshow (flipHorizontal)

dft = cv2.dft (flipHorizontal, flags = cv2.DFT COMPLEX OUTPUT)
dft shift = np.fft.fftshift (dft) - -
magﬁitude_spectrum = 20*np.log(cv2.magnitude (dft shift[:,:,0],dft |
shift[:,:,11))

cv2_imshow (magnitude spectrum)

Paso 6) Doble inversién de la imagen (horizontal y vertical), calcular su DFT y gra-
ficar

flipBoth = cv2.flip(img_float32, -I)

cv2 imshow (flipBoth)

dft = cv2.dft (flipBoth, flags = cv2.DFT COMPLEX OUTPUT)

dft shift = np.fft.fftshift (dft) - -

magHitude_spectrum = 20*np.log(cv2.magnitude (dft shift[:,:,0],dft |
shift[:,:,11))

cv2_ imshow (magnitude spectrum)

6.9.2. DCT (Discrete Cosine Transform)

Esta transformada es muy Uutil para la compresion de imagenes, dado que gran parte
de la informacion de la imagen (la mas significativa o representativa) se concentra
en pocos coeficientes espectrales. Hace parte del algoritmo de compresién de ima-
genes conocido como JPEG (Joint Photographic Experts Group).

A diferencia de la DFT, en este caso todos sus coeficientes son reales, calculados a
partir de la siguiente ecuacion:

Donde C(k,I) corresponde a la DCT de la imagen f{a,b) de tamano (M,N).

Tipicamente, la DCT se calcula por bloques de la imagen, es decir, la imagen se divide
en zonas y a cada zona se la aplica la DCT. A continuacién, se presenta un ejemplo
de la DCT para la imagen completa, y para diferentes tamanos de bloque.
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Figura 118. DCT de la imagen de la Figura 84.a.

A diferencia de la DFT, si es posible encontrar una relacion directa entre la DCT y
la imagen de entrada, cuando el tamano del bloque es pequeno. Por ejemplo, en la
Figura |18b, se alcanza a apreciar la pared y la persiana de la oficina; mientras que,
en la Figura |18c y Figura |18d, se visualizan lineas diagonales correspondientes a
la separacion entre filas de ladrillos. Cuando el tamano del bloque es de (32,32) o
superior, ya no se alcanzan a identificar los patrones de la imagen.

En este caso, el codigo de Python para obtener las graficas anteriores, se presenta
a continuacion:

Paso ) Cargue de librerias de lectura de la imagen

import numpy as np

import cv2

from google.colab.patches import cv2 imshow
url= “/content/oficina.png”

img = cv2.imread (url)
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Paso 2) Convertir la imagen RGB a escala de grises y representarla en punto flo-
tante de 32 bits

img gray=cv2.cvtColor (img, cv2.COLOR BGR2GRAY)
cv2_ imshow (img gray)
img float32 = np.float32(img gray)

Paso 3) Calcular la DCT Yy visualizar el resultado

dct = cv2.dct (img float32)
cv2_imshow (dct)

Nota: en este caso no se necesitan re-ordenar los coeficientes, como si se realizo
en el caso de la DFT. Adicionalmente, no se calcula la magnitud, dado que los valores
son reales. Tampoco, se grafica en escala logaritmica.

Paso 4) Definir el tamano del block, calcular la cantidad de bloques y crear un DCT
de salida de valores cero.

B=2 #blocksize

imgl = img float32

h= imgl.shape[0]

w =imgl.shape[1l]
blocksV=np.int (h/B)
blocksH=np.int (w/B)
transformed=np.zeros ([h, w])

Nota: este ejemplo esta disenado para bloques cuadrados. En este caso es de (2,2).

Paso 4) Aplicar la DCT por bloque y escribir el resultado en la zona de salida co-
rrespondiente.

for row in range(blocksV) :
for col in range (blocksH) :
currentblock = cv2.dct (imgl [row*B: (row+1) *B,col*B: (col+1) *B])
transformed[row*B: (row+1l) *B,col*B: (col+1) *B]= currentblock
cv2_imshow ( (transformed) )

6.9.3. Comprensiéon de imagenes con la DCT

Como se habia mencionado previamente, una de las aplicaciones de la DCT es en la
comprension de imagenes, especificamente en el estandar |JPEG. A continuacion, se
explicara brevemente en que consiste ese método de comprension.

Lo primero a resaltar es que JPEG es un método de comprension con pérdida de
informacion (o lossy), que significa que parte de los datos se pierden en el proceso
de compresion y no se puede recuperar la imagen exactamente igual a la original; no
obstante, de forma visual, no se apreciaran diferencias significativas entre la imagen
original y su version comprimida. Su principal ventaja sobre métodos de compresion
sin pérdida de informacion (o lossless) es que permite obtener una tasa de compre-
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sion mayor, conocida como CR (compression rate), la cual corresponde a la relacion
entre el tamaho de la imagen sin comprimir y el tamafo de la imagen comprimida.

Los principales bloques que hacen parte del método JPEG son: DCT, cuantizacion
inteligente, y codificacion RL y Huffman. De forma muy resumida, los pasos son los
siguientes'®:

a.

Aplicar DCT por bloques de la imagen, por ejemplo, de tamano (8,8). El
resultado es otra imagen del mismo tamano, cuyos datos corresponden a
coeficientes espectrales.

Aplicar cuantizacion a los coeficientes espectrales, dividiendo su valor
entre un factor de cuantizacion. De esta manera, se reduce la cantidad de
valores de salida (y la precision de los datos). Adicionalmente, el proceso
es inteligente, dado que el factor de cuantizacién no es constante, sino
que, depende de la amplitud del coeficiente a cuantizar. A los coeficientes
que representan frecuencias mayores se les aplica un factor de cuantiza-
cion mayor.

A los coeficientes cuantizados se les aplica el método de codificacion
run-length (RL). Este método aprovecha la gran cantidad de ceros con-
secutivos que se obtienen al combinar la DCT con la cuantizacion inte-
ligente. El barrido sobre los coeficientes cuantizados se realiza en forma
de zig-zag, empezando en el extremo superior izquierdo de la matriz
(DCT cuantizada). La longitud de la trama de salida es mucho menor ala
cantidad de coeficientes cuantizados del paso b.

Finalmente, se aplica codificacion Huffman. La idea principal de este mé-
todo es representar los “simbolos” de mayor ocurrencia de la trama con
la menor cantidad de bits, mientras que, los de menor ocurrencia con
la mayor cantidad de bits. Entonces, los coeficientes espectrales cuanti-
zados y codificados con RL tendran una representacion binaria que es
significativamente menor a multiplicar el tamafio de la imagen por 8 bits
(en el caso de imagenes a escala de grises) o por 24 bits (en el caso de
imagenes a color de 3 canales). Los valores de compresion pueden llegar
a 100 veces.
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https:

cs.stanford.edu/people/eroberts/courses/soco/projects/data-compression/lossy/jpeg/index.htm
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