
1PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Título original
Procesamiento digital de señales utilizando Python
Autores:

Dora Maria Ballesteros
Diego Renza

Universidad Militar Nueva Granada
Facultad de Ingeniería- Ingeniería en Telecomunicaciones

Editorial
REDIPE Red Iberoamericana de Pedagogía
Capítulo Estados Unidos
Bowker Books in Print

Editor
	 Julio César Arboleda Aparicio

Diagramación
	 Oliver García Ramos

ISBN: 978-1-957395-22-7
	 Primera edición: Marzo 2023
	 ® Todos los derechos reservados

Comité Editorial
	 Valdir Heitor Barzotto, Universidad de Sao Paulo, Brasil
	 Carlos Arboleda A. PhD Investigador Southern Connecticut State University, Estados

Unidos
	 Agustín de La Herrán Gascón, Ph D. Universidad Autónoma de Madrid, España
	 Mario Germán Gil Claros, Grupo de Investigación Redipe
	 Rodrigo Ruay Garcés, Chile. Coordinador Macroproyecto Investigativo Iberoamerica-

no EvaluaciónEducativa
	 Julio César Arboleda, Ph D. Dirección General Redipe. Grupo de investigación Educa-

ción y Desarrollo humano, Universidad de San Buenaventura

	 Queda prohibida, salvo excepción prevista en la ley, la reproducción (electrónica,-
química, mecánica, óptica, de grabación o de fotocopia), distribución, comunicación
pública y transformación de cualquier parte de ésta publicación -incluído el diseño de
la cubierta- sin la previa autorización escrita de los titulares de la propiedad intelectual
y de la Editorial. La infracción de los derechos mencionados puede ser constitutiva de
delito contra la propiedad intelectual.

	 Los Editores no se pronuncian, ni expresan ni implícitamente, respecto a la exactitud
de la información contenida en este libro, razón por la cual no puede asumir ningún
tipo de responsabilidad en caso de error u omisión.

Red Iberoamericana de Pedaogía
editorial@redipe.org
www.redipe.org
Impreso en Cali, Colombia
Printed in Cali, Colombia

© 2023

Tabla de Contenido

Prólogo

CAPITULO 1.
DEL MUNDO ANÁLOGO AL MUNDO DIGITAL

CAPITULO 2.
NOTACIÓN EN EL MUNDO DISCRETO

CAPITULO 3.
MIS PRIMEROS FILTROS DIGITALES	

CAPITULO 4.
MÉTODOS DE DISEÑO DE FILTROS FIR	

CAPITULO 5.
MÉTODOS DE DISEÑO DE FILTROS IIR

CAPITULO 6.
PROCESAMIENTO DE IMÁGENES	

 

11

13

29

37

51

77

107

Índice de Figuras
Figura 1. 	 Diagrama general de un proceso de conversión A/D.	

Figura 2. 	 Ejemplo de espectro de señal de voz, fs=8 kHz.	

Figura 3. 	 Ejemplo de señal de voz en el dominio del tiempo.	

Figura 4. 	 Ejemplo de señal de voz en el dominio del tiempo, con normali-
zación de amplitud.	

Figura 5. 	 Espectro de la señal de voz de la Figura 4.	

Figura 6. 	 Ejemplo de señal de música en el dominio del tiempo.	

Figura 7. 	 Espectro de la señal de música de la Figura 6.

Figura 8. 	 Espectro de la señal de voz de la Figura 4, re-muestreada a 1
kHz.	

Figura 9. 	 Ejemplo de señal de voz con dos formas distintas de visualiza-
ción.	

Figura 10. 	 Ejemplo de señal de voz cuantizada a 8-bits.	

Figura 11. 	 Ejemplo de señal de voz cuantizada a 6-bits.	

Figura 12. 	 Ejemplo de señal de voz cuantizada a 3-bits.	

Figura 13. 	 Ejemplo del efecto de re-cuantización de la señal de música a 8
bits y a 3 bits.	

Figura 14. 	 Ejemplo de señal en el dominio discreto.	

Figura 15. 	 Ejemplo de diagrama de bloques de un sistema discreto.	

Figura 16. 	 Respuesta al impulso de un filtro de promedio causal, M=11.

Figura 17. 	 Respuesta al impulso de un filtro de promedio no causal, M=11.

Figura 18. 	 Señal senoidal sin ruido.	

Figura 19. 	 Ruido aleatorio.	

11

15

16

16

17

18

18

19

20

21

22

22

23

30

33

38

39

40

41

Figura 20. 	 Señal senoidal con ruido de fondo.	

Figura 21. 	 Resultado de filtrar una señal senoidal ruidosa con un filtro de
promedio: a) señal de entrada, b) señal filtrada con M=7, c) señal
filtrada con M=11, d) señal filtrada con M=111.	

Figura 22. 	 Magnitud de la respuesta en frecuencia de un filtro de promedio,
M=7.	

Figura 23. 	 Magnitud de la respuesta en frecuencia de un filtro de promedio,
M=31.	

Figura 24. 	 Magnitud de la respuesta en frecuencia de un filtro de promedio,
M=8.

Figura 25. 	 Diagrama de bloques filtro Leaky.	

Figura 26. 	 Diagrama de bloques filtro de promedio, M=100.	

Figura 27. 	 Respuesta en frecuencia de un filtro análogo pasa-bajo ideal.	

Figura 28. 	 Respuesta en frecuencia de un filtro análogo pasa-alto ideal.

Figura 29. 	 Respuesta en frecuencia de un filtro análogo pasa-banda ideal.

Figura 30. 	 Respuesta en frecuencia de un filtro análogo rechaza-banda
ideal.	

Figura 31. 	 Respuesta en frecuencia del filtro digital pasa-bajo ideal, valores
en [rad/muestra].	

Figura 32. 	 Espectro por truncamiento de hn con -5≤n≤5.	

Figura 33. 	 Espectro por truncamiento de hn con -20≤n≤20.	

Figura 34. 	 Muestreo en frecuencia del filtro análogo, M=21.	

Figura 35. 	 Magnitud de la respuesta en frecuencia método muestreo en
frecuencia, M=21.	

Figura 36. 	 Muestreo en frecuencia del filtro análogo, M=18.	

Figura 37. 	 Magnitud de la respuesta en frecuencia método muestreo en
frecuencia, M=18.	

Figura 38. 	 Diseño de filtros FIR utilizando el método de ventaneo.	

Figura 39. 	 Ejemplos de ventanas, M=50: a) boxcar, b) hamming, c) blackman,
d) hanning, e) triangular, f) tukey.	

41

42

44

45

46

48

48

52

52

52

53

53

55

55

56

58

59

61

63

65

Figura 40. 	 Respuesta en frecuencia para M=50 de las ventanas: a) boxcar, b)
hamming, c) blackman, d) hanning, e) triangular, f) tukey.	

Figura 41. 	 Respuesta al impulso, hn, método de ventaneo, M=50: a) boxcar,
b) hamming, c) blackman, d) hanning, e) triangular, f) tukey.	

Figura 42. 	 Respuesta en frecuencia de filtros FIR diseñados con ventanas
(escala logarítmica), M=50: a) boxcar, b) hamming, c) blackman, d)
hanning, e) triangular, f) tukey.

Figura 43. 	 Respuesta en frecuencia de filtros FIR diseñados con ventanas
(escala lineal), M=50: a) boxcar, b) hamming, c) blackman, d) han-
ning, e) triangular, f) tukey.

Figura 44. 	 Gráfica de polos y ceros filtro de promedio, para: a) M=2, b)
M=3, c) M=4, d) M=5.

Figura 45. 	 Gráfica de polos y ceros, filtro pasa-bajos diseñado con la venta-
na hamming: a) M=2, b) M=4, c) M=6, d) M=8.	

Figura 46. 	 Gráfica de polos y ceros, filtro pasa-altos diseñado con la venta-
na hamming: a) M=3, b) M=7, c) M=11, d) M=15.	

Figura 47. 	 Gráfica de la señal 12nun.	

Figura 48. 	 Gráfica de la señal -2nu-n-1.	

Figura 49. 	 Señal discreta: concepto de derivada.

Figura 50. 	 Respuesta en frecuencia filtro análogo pasa-alto, Ωc=200π
radseg.	

Figura 51. 	 Respuesta en frecuencia filtro digital pasa-alto, ωd=0.6 rad-
muestra, ς=1.

Figura 52. 	 Gráfica de polos y ceros del filtro digital pasa-alto, ωd=0.6 rad-
muestra.

Figura 53. 	 Respuesta en frecuencia filtro análogo pasa-bajo, Ωc=200π
radseg.	

Figura 54. 	 Respuesta en frecuencia filtro digital pasa-bajo, ωd=0.133 rad-
muestra, ς=0.707.	

Figura 55. 	 Gráfica de polos y ceros del filtro digital pasa-bajo, ωd=1.33
radmuestra.

Figura 56. 	 Respuesta en frecuencia filtro análogo pasa-banda, Ωr=200π
radseg.

66

68

69

70

72

74

75

79

80

82

85

86

87

88

89

90

91

Figura 57. 	 Respuesta en frecuencia filtro digital pasa-banda, ωd=1.61 rad-
muestra, Q=2.

Figura 58.	 Gráfica de polos y ceros del filtro digital pasa-banda, ωd=1.61
radmuestra.	

Figura 59. 	 Respuesta en frecuencia filtro análogo Butterworth, Ωc=100 Hz
y N=2,4,6,8,10.

Figura 60. 	 Respuesta en frecuencia filtro digital Butterworth, ωd=0.6 rad-
muestra y N=2,4,6,8,10.

Figura 61. 	 Gráfica de polos y ceros del filtro pasa pasa-bajo Buttherworth
digital, ωd=0.6 radmuestra y N=2,4,6,8,10. Estrategia de dise-
ño # 1.

Figura 62. 	 Respuesta en frecuencia filtro Butterworth digital pasa pasa-bajo,
ωN=0.2 y N=2,4,6,8,10. Estrategia de diseño #2.	

Figura 63. 	 Gráfica de polos y ceros del filtro pasa pasa-bajo, ωN=0.2 y
N=2,4,6,8,10. Estrategia de diseño # 2.

Figura 64. 	 Señal en el dominio del tiempo, xnoisen.	

Figura 65. 	 Espectro de xnoisen.	

Figura 66. 	 Respuesta en frecuencia filtro análogo pasa-banda, Ωr=1000π
radseg.

Figura 67. 	 Respuesta en frecuencia filtro digital pasa-banda, ωd=0.061
radmuestra.	

Figura 68. 	 Señal filtrada en el dominio del tiempo.

Figura 69. 	 Espectro de la señal filtrada.	

Figura 70. 	 Ejemplo de imagen: a) BW, b) Escala de grises, c) Color. Fuente:
repositorio personal de los autores.	

Figura 71. 	 Ejemplo de imagen RGB: a) banda R, b) banda G, c) banda B.
Fuente: repositorio personal de los autores.

Figura 72.	 Ejemplo de imagen HSB: a) banda H, b) banda S, c) banda B.
Fuente: repositorio personal de los autores.

Figura 73. 	 Logo de OpenCV.	

Figura 74. 	 Imagen a color – foto playa.	

92

93

96

97

98

100

101

102

103

104

105

106

106

108

109

109

110

110

Figura 75. 	 Imagen a escala de grises – foto playa.	

Figura 76. 	 Imagen a blanco y negro – foto playa.	

Figura 77. 	 Imagen canal H – foto playa.	

Figura 78. 	 Imagen canal S – foto playa.	

Figura 79. 	 Imagen canal V – foto playa.	

Figura 80. 	 Imagen a color – foto mar. Fuente: repositorio personal de los
autores.	

Figura 81. 	 Imagen a escala de grises – foto mar.

Figura 82. 	 Histograma de la imagen a escala de grises – foto mar.

Figura 83. 	 Imagen ecualizada a escala de grises – foto mar.

Figura 84. 	 Histograma de la imagen ecualizada a escala de grises – foto
mar.	

Figura 85. 	 Histograma por banda de la imagen a color – foto mar.	

Figura 86. 	 Imagen ecualizada a color – foto mar.	

Figura 87. 	 Imagen a color – ruido gaussiano.	

Figura 88. 	 Histograma por banda de la imagen a color – ruido gaussiano.

Figura 89. 	 Imagen a color – villa de leyva. Fuente: repositorio personal de
los autores.

Figura 90. 	 Imagen a color con ruido gaussiano – villa de leyva.	

Figura 91. 	 Imagen a color – ruido uniforme.	

Figura 92. 	 Histograma por banda de la imagen a color – ruido unifor-
me.	

Figura 93. 	 Imagen a color con ruido uniforme – villa de leyva.

Figura 94. 	 Imagen a color con ruido sal y pimienta, con th=10.

Figura 95. 	 Histograma por banda de la imagen a color – ruido sal y pimien-
ta con th=10.

Figura 96. 	 Imagen a color con ruido sal y pimienta, con th=200.	

Figura 97. 	 Histograma por banda de la imagen a color – ruido sal y pimien-
ta con th=200.	

111

111

112

112

112

113

114

115

115

116

117

117

119

119

119

120

121

121

122

123

123

124

124

Figura 98. 	 Imagen a color con ruido sal y pimienta, th=200 – villa de ley-
va.	

Figura 99. 	 Imagen de playa con tres tipos distintos de ruido: (a) sal y pi-
mienta, (b) guassiano, (c) uniforme. Fuente: repositorio personal
de los autores.	

Figura 100. 	Filtro de promedio (5 x 5).

Figura 101. 	Imagen filtrada con filtro de promedio – ruido sal y pimienta.

Figura 102. 	Filtro gaussiano (5 x 5). Se ha encerrado en un recuadro 	
rojo la posición central del filtro.	

Figura 103. 	Imagen filtrada con filtro de gaussiano – ruido sal y pimienta.

Figura 104. 	Imagen filtrada con filtro de mediana – ruido sal y pimienta.

Figura 105.	 Imagen filtrada con filtro de promedio – ruido gaussia	
no.	

Figura 106.	 Imagen filtrada con filtro bilateral – ruido gaussiano.

Figura 107. 	Imagen y filtro para operación de convolución.

Figura 108. 	Imagen de entrada con borde.

Figura 109.	 Proceso de convolución: Paso 2. Se sombrea en amarillo el píxel
central de la imagen, para el paso correspondiente.

Figura 110. 	Proceso de convolución: paso 3. Se sombrea en amarillo el píxel
central de la imagen, para el paso correspondiente.

Figura 111. 	Pixel central en el proceso de convolución: barrido de la 	
imagen de izquierda a derecha, y de arriba abajo.	

Figura 112. 	Imagen filtrada.	

Figura 113. 	Filtro Prewitt (3 x 3).	

Figura 114. 	Filtro Sobel (3 x 3).	

Figura 115. 	Filtro Laplaciano (3 x 3).	

Figura 116. 	Imagen de entrada y detección de bordes con diferentes tipos
de filtros. Fuente: repositorio personal de los autores.	

Figura 117. 	Imagen con su respectiva DFT.

Figura 118. 	DCT de la imagen de la Figura 84.a.

124

125

125

126

126

127

127

128

128

129

129

130

131

131

132

133

133

133

137

139

141

Prólogo
Hoy en día el procesamiento digital de señales se ha convertido en una herramienta
indispensable en diversas áreas del conocimiento, desde la medicina hasta las co-
municaciones, pasando por la industria musical y el diseño de sistemas electrónicos.
En cualquiera de estas áreas, así como de muchas otras, que requieran análisis y
manipulación de la información, para, por ejemplo, mejorar su calidad o identificar
patrones.

Dentro del ámbito del procesamiento digital de señales, el lenguaje de programación
Python se ha convertido en una herramienta muy popular debido a su facilidad de
uso, gran cantidad de librerías disponibles y su capacidad para manejar grandes
volúmenes de datos. Es por ello que este libro titulado “Procesamiento digital de
señales utilizando Python” está escrito para proporcionar una base sólida en la
temática, con énfasis en la implementación práctica apoyándose en este lenguaje
de programación. Por ello, cada capítulo incluye ejemplos de código en Python y
problemas resueltos para ayudar a los estudiantes a aplicar los conceptos teóricos
presentados. Está enfocado a estudiantes de pregrado de ingeniería, especialmente
de sistemas, electrónica, telecomunicaciones, mecatrónica, multimedia y programas
afines.

El libro está organizado en seis capítulos que abarcan desde la digitalización de
señales análogas, hasta el procesamiento digital de imágenes. Se recomienda su lec-
tura de forma secuencial, para un mejor entendimiento de las explicaciones, ecua-
ciones, ejemplos y códigos presentados en el documento.

En el primer capítulo se introduce el concepto de señales digitales y la importancia
de su análisis y procesamiento a través de operaciones de muestreo y cuantización,
así como las implicaciones que tiene la selección de la frecuencia de muestreo y el
número de bits de cuantización, tanto en la calidad de la señal muestreada, como en
el almacenamiento y transmisión de la señal.

En el segundo capítulo se presentan la Transformada Z de señales discretas de du-
ración finita, la función de transferencia de sistemas LTI, diagramas de bloques de
sistemas discretos, y la diferencia entre filtros FIR e IIR a partir de la ecuación de
entrada-salida, función de transferencia y respuesta al impulso del sistema. Por su
parte, en el tercer capítulo se explica el diseño de filtros de promedio, el filtrado de
señales 1D, su comportamiento en frecuencia, así como la relación entre el orden

del filtro y la frecuencia de corte. Adicionalmente, se presenta el filtro Leaky, del
mismo modo que sus semejanzas y diferencias con el filtro de promedio.

En los capítulos cuatro y cinco se abordan los métodos de diseño de filtros FIR e
IIR, las gráficas de polos y ceros, de la misma manera que su relación con la fre-
cuencia de corte y el tipo de filtro diseñado (pasa-bajo, pasa-alto, pasa-banda). En
el último capítulo, se introduce al lector en conceptos básicos de procesamiento
de imágenes, como tipos de imágenes (blanco-negro, escala de grises, e imágenes a
color), modelos de color RGB y HSV, ecualización de imágenes, tipos de ruido en
imágenes, filtros espaciales, convolución en imágenes, detección de bordes en imá-
genes y compresión de imágenes.

Esperamos que este libro sea de gran utilidad para aquellos estudiantes que deseen
aprender métodos y técnicas de procesamiento digital de señales, utilizando Python,
y que les permita resolver problemas reales de ingeniería, de esta era digital.

13PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

CAPÍTULO 1.

Del Mundo Análogo al Mundo Digital
En este capítulo encontrarás una breve introducción al procesamiento digital de
señales, específicamente en relación con los conceptos de muestreo, cuantización y
costo de almacenamiento/transmisión asociados al proceso de conversión análogo
a digital (A/D).

Al finalizar el capítulo, deberás estar en capacidad de:
1.	 Explicar el concepto de muestreo de señales análogas/continuas.
2.	 Explicar el concepto de cuantización de muestras.
3.	 Seleccionar adecuadamente los parámetros de frecuencia de mues	
	 treo y bits de resolución en la conversión A/D, de acuerdo con el 	
	 espectro de la señal y su comportamiento en el dominio del tiempo.
4.	 Explicar el costo de almacenamiento/transmisión del proceso de 	
	 conversión A/D de señales continuas/análogas.
5.	 Explicar el efecto en frecuencia de muestrear una señal análoga/		
	 continua.

El Procesamiento Digital de Señales es un conjunto de técnicas y métodos que per-
miten manipular una señal para obtener información de ella (patrones), o para mo-
dificarla o transformarla. Por ejemplo, la señal de voz es una señal análoga en tiem-
po continuo que contiene información de entonación, género del hablante, idioma,
entre otros, que puede ser utilizada para identificar qué persona está pronunciando
un mensaje o discurso. En este caso, el procesamiento digital de la señal se enfoca
en identificar patrones de voz que permitan caracterizar al hablante, y compararlo
con una base de datos previamente almacenada en el sistema. También, hoy en día
encontramos dispositivos celulares que utilizan reconocimiento facial como medio
para desbloquear el acceso al sistema, sustituyendo o reemplazando la opción clá-
sica de clave numérica; por lo cual, el celular debe identificar “características faciales”
que permitan corroborar si el rostro que está frente a la cámara es el autorizado
para desbloquearlo.

Pero ¿cómo pasamos del mundo análogo/continuo al mundo digital/discreto? Gran
parte de las señales que encontramos en la naturaleza son análogas (infinitos valo-
res de amplitudes posibles) que se van actualizando a lo largo de la variable inde-
pendiente, que típicamente es el tiempo (con infinitos valores de tiempo posibles),
que deben ser transformadas antes de poder ser utilizadas por un sistema digital.

14 Dora Maria Ballesteros, Diego Renza

El proceso se conoce como conversión análogo-digital (ó A/D), el cual consiste en
seleccionar un número finito de valores de tiempo en los que representaremos sus
amplitudes en un número finito de bits. De tal forma que tanto la variable indepen-
diente (tiempo), como la variable dependiente (amplitud de la señal) son discretiza-
dos. En la Figura 1 encontrarás una gráfica ilustrativa de la conversión A/D.

Figura 1. Diagrama general de un proceso de conversión A/D.

En las siguientes subsecciones encontrarás en detalle los conceptos de muestreo
y cuantización, su costo de almacenamiento y transmisión, así como el efecto del
muestreo en el espectro de la señal. 

1.1. MUESTREO DE LA SEÑAL ANÁLOGA/CONTINUA

En la primera parte del proceso de conversión A/D, se selecciona un número de
muestras por segundo de la señal, conocido como frecuencia de muestreo (fs). De
esta forma, si, por ejemplo, la señal tiene una duración de 10 segundos y la frecuen-
cia de muestreo es de 8 kHz, entonces, la cantidad total de muestras es de 80.000.
El valor de fs, en el caso de muestreo equi-espaciado, debe satisfacer el criterio de

Nyquist, el cual establece que:

	 		 fs ≥ 2 * fmax		 Ecuación 1

Donde fmax corresponde a la frecuencia máxima de la señal de tiempo continuo. Por
ejemplo, si el espectro de nuestra señal tiene el comportamiento de la Figura 2, en-
tonces la frecuencia de Nyquist es de 8 kHz. En otras palabras, una fs = 8 kHz solo

es adecuada para señales cuya fmax = 4 kHz.

15PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 2. Ejemplo de espectro de señal de voz, fs = 8 kHz.

La lectura y procesamiento de un archivo de voz (ej. en formato wav), está soportado
en muchos lenguajes de programación. Para el caso del lenguaje Python, podemos
utilizar la librería Librosa con el fin de cargar la señal en el entorno de ejecución (por
ejemplo, en un Jupyter notebook como CoLaboratory). Esta librería permitirá también
visualizar la señal o conocer la fs con la que fue muestreada.

Específicamente, en lenguaje Python escribimos el siguiente código para la visualiza-
ción de la señal en el dominio del tiempo:

import librosa
import librosa.display
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import IPython
from scipy.io import wavfile
from scipy.fft import fftshift

plt.rcParams[“figure.figsize”] = (14,5)
filename = ‘audio.wav’

Se debe asignar sr=None para que se conserve la fs original del audio.
En caso contrario, se re-muestrea a 22050 Hz.
audio, fs = librosa.load(filename, sr=None)
librosa.display.waveplot(audio, sr=fs);

print(“frecuencia de muestreo de la señal:”, fs, “Hz”)
print(“cantidad de muestras de la señal:”, len(audio))

16 Dora Maria Ballesteros, Diego Renza

Obteniendo como resultado:

frecuencia de muestreo de la señal: 8000 Hz
cantidad de muestras de la señal: 24000

Figura 3. Ejemplo de señal de voz en el dominio del tiempo.

De acuerdo con la Figura 3, esta señal de voz tiene una duración de 3 segundos, y
su amplitud se encuentra comprendida entre [-0.45 0.45], aproximadamente. Adi-
cionalmente, en 1.7 segundos, se percibe un incremento significativo de la amplitud
de la señal (tanto positiva como negativa) en relación con los demás valores de
amplitud a lo largo de los 3 segundos. Teniendo en cuenta que la fs = 8 kHz, el total
de muestras de la señal es de 24K.

Si queremos que el audio se ajuste al máximo volumen posible, podemos escalar su
amplitud, así:

norm = max(np.absolute([min(audio), max(audio)]))
audio= audio /norm
librosa.display.waveplot(audio, sr=fs);

Figura 4. Ejemplo de señal de voz en el dominio del tiempo, con normalización de amplitud.

17PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Esta nueva señal tiene una amplitud mayor a la señal original, y ahora se encuentra
en el rango de [-1 1]. Adicionalmente, podemos reproducir el audio, con el siguiente
código:

IPython.display.Audio(audio, rate=fs)

El cual genera un botón de reproducción

Posteriormente, es posible graficar el espectro de la señal con el siguiente código
en Python:

import scipy.fftpack as fourier

L=len(audio)
transformada = fourier.fft(audio)
magnitud = abs(transformada)
magnitud_lateral = magnitud[0:L//2]
fase = np.angle(transformada)
frecuencias = fs*np.arange(0, L//2)/L

plt.plot(frecuencias, magnitud_lateral)
plt.xlabel(‘Frecuencia (Hz)’, fontsize=’10’)
plt.ylabel(‘Amplitud FFT’, fontsize=’10’)
plt.show()

Figura 5. Espectro de la señal de voz de la Figura 4.

Pero ¿cómo sabemos si la frecuencia de muestreo de la señal en el proceso de con-
versión A/D fue adecuada? La respuesta la obtenemos en su espectro. Por ejemplo,
para nuestro caso, las amplitudes de la FFT para frecuencias mayores de 2 kHz son
muy cercanas a cero y distan significativamente de las amplitudes en frecuencias
inferiores a 1 kHz. De tal forma que, la mayor parte de la energía de la señal se
encuentra en las frecuencias menores a 1kHz, y entonces fs = 8 kHz es adecuada. Si
por el contrario, en frecuencias cercanas a 4 kHz las amplitudes de la FFT fuesen

18 Dora Maria Ballesteros, Diego Renza

comparativamente altas en relación con frecuencias menores, muy posiblemente la
fs seleccionada sería incorrecta, y tendríamos que escoger un valor mayor.

Supongamos que nuestra señal corresponde a un fragmento de música de un con-
cierto de violín (Figura 6), cuyo espectro se presenta en la Figura 7.

Figura 6. Ejemplo de señal de música en el dominio del tiempo.

A diferencia de la señal de voz, las amplitudes de la FFT cercanas a 4 kHz no son
significativamente pequeñas en relación con las amplitudes en frecuencias menores
a 1 kHz, por lo que utilizar una fs > 8 kHz es necesario, por ejemplo fs = 22 kHz.

Figura 7. Espectro de la señal de música de la Figura 6.

Hasta aquí, hemos comprendido que no todas las señales necesitan la misma fre-
cuencia de muestreo, y que a medida que la frecuencia máxima de la señal conti-
nua es mayor, debemos muestrear la señal con un número mayor de muestras por
segundo. ¿Pero qué ocurriría si seleccionamos una fs no adecuada, es decir que no
cumpla el criterio de Nyquist? La respuesta se ilustrará a través de ejemplos.

Supongamos entonces que la señal de voz de la Figura 4 la re-muestreamos a 1 kHz,
es decir, solamente conservaremos las componentes de frecuencias de los 0 Hz
hasta los 500 Hz, como se presenta en la Figura 8.

19PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 8. Espectro de la señal de voz de la Figura 4, re-muestreada a 1 kHz.

Esta nueva señal tiene el efecto de escucharse la voz ahogada, dado que, no cuenta
con componentes de frecuencias altas, relacionadas con el detalle de la señal. Este
fenómeno, el cual ocurre cuando la frecuencia de muestreo no es al menos el doble
de la frecuencia máxima de la señal, se conoce como aliasing.

Finalmente, es necesario aclarar que, aunque en un dispositivo digital como un PC
podemos graficar una señal con apariencia de continua/análoga, estas señales son en
realidad discretas/digitales. Internamente, se realiza un proceso de interpolación que
permite unir las amplitudes discretas para que luzcan como una señal que varía para
valores infinitos de tiempo.

Específicamente en lenguaje Python, se puede utilizar la librería Matplotlib para gra-
ficar señales uni-dimensionales (1D), con dos opciones de visualización: plot para
tiempo continuo, stem para tiempo discreto. A diferencia de la librería de Librosa, es
necesario definir un vector de tiempos previo a la visualización.

A continuación, se presenta el código en Python para las dos formas de visualización.

t = np.arange(0,len(audio)/fs,1/fs)
plt.rcParams[“figure.figsize”] = (14,8)
ax = plt.subplot(2, 1, 1)
plt.plot(t[8000:8100], audio[8000:8100])
plt.title(“Gráfica señal de voz utilizando plt.plot”)
ax = plt.subplot(2, 1, 2)
plt.stem(audio[8000:8100])

plt.title(“Gráfica señal de voz utilizando plt.stem”)

20 Dora Maria Ballesteros, Diego Renza

Figura 9. Ejemplo de señal de voz con dos formas distintas de visualización.

En la Figura 9a se graficaron 0.0125 segundos de la señal de voz de la Figura 4, com-
prendidos en el rango [1 1.0125) segundos, que corresponden a la interpolación de
100 muestras de la señal de voz en el rango [8000 8100). Aunque en este libro utili-
cemos en algunas ocasiones plot y en otras stem, el estudiante deberá siempre tener
en cuenta que se están graficando señales discretas en el tiempo, con un número
finito de bits de resolución.

1.2.	 CUANTIZACIÓN DE LAS MUESTRAS

Una vez se ha muestreado la señal, el siguiente paso (el cual se realiza casi de forma
paralela en el conversor A/D) consiste en representar mediante bits a la amplitud de
la señal discreta. Existen diversos formatos de representación de datos, por ejem-
plo, magnitud, magnitud + signo, punto flotante, entre otros. Supongamos que nuestro
conversor trabaja con el formato magnitud + signo, donde el MSB (Most Significant Bit:
bit más significativo) corresponde al signo del dato, y los restantes bits a la magnitud.
De tal forma que, si el MSB es igual a 1, entonces la amplitud es negativa; en caso
contrario, la amplitud es positiva.

Ahora bien, los conversores permiten trabajar con diferente número de bits de con-
versión por muestra, lo que se conoce como bits de resolución. A mayor cantidad
de bits, la señal digital se escuchará más fiel a la señal análoga. Típicamente, podemos
encontrar resoluciones de 8, 16, 24 y 32 bits.

Supongamos que nuestro audio que inicialmente se encontraba en el rango [-1 1]
lo cuantizamos con 4 bits en formato magnitud + signo. Entonces, tenemos 3 bits

21PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

para la magnitud de la señal y 1 bit para el signo, de tal forma que cada incremento
de amplitud de 1⁄23 tendrá un nuevo código digital. Es decir, a todas las amplitudes
del audio en el rango [0 1⁄23) se les asigna el código 0000, a todas las amplitudes
en el rango [1⁄23 2/23) se les asigna el código 0001, y así sucesivamente. La Tabla
1 presenta la asignación de códigos por rangos de amplitud de la señal.

Tabla 1. Ejemplo de cuantización con 4 bits con formato magnitud + signo, para una señal
en el rango [-1 1].

De acuerdo con la Tabla 1, dos amplitudes que solo se diferencien en el signo (ej.
-0.6 y 0.6) tendrán el mismo código excepto en su MSB (en este caso, 1100 y 0100).
A medida que aumenta el número de bits de resolución, el rango de amplitudes que
comparte el mismo código se va haciendo más pequeño. Por ejemplo, si la señal con
rango análogo de [-1 1] la cuantizamos a 16 bits (15 de magnitud y 1 de signo), cada
1⁄215 (es decir 30.5*10-6) tendrá un código digital distinto.

Para ilustrar el impacto de la cantidad de bits de resolución, utilicemos las mismas
señales discretas de la sección anterior, la señal de voz y la de audio, para ilustrar el
impacto de los bits de resolución en la calidad de la señal digital/discreta. El archivo
audio.wav tiene 16 bits de resolución. Vamos a re-cuantizarlo a 8 bits (Figura 10), con
el siguiente código en Python:

bits = 8
audio_8bit = (audio* 2**bits).astype(int)
audio_8bit = audio_8bit / 2**bits
librosa.display.waveplot(audio_8bit, sr=fs)

Figura 10. Ejemplo de señal de voz cuantizada a 8-bits.

22 Dora Maria Ballesteros, Diego Renza

y reproducimos la señal, así:

IPython.display.Audio(audio_8bit, rate=fs)

El efecto es que escuchamos ruido de fondo en la señal, pero el mensaje seguirá sien-
do legible. Ahora, disminuiremos la resolución a 6 bits (Figura 11), y compararemos
los resultados con los obtenidos previamente.

bits = 6
audio_6bit = (audio* 2**bits).astype(int)
audio_6bit = audio_6bit / 2**bits
librosa.display.waveplot(audio_6bit, sr=fs);

IPython.display.Audio(audio_6bit, rate=fs)

Figura 11. Ejemplo de señal de voz cuantizada a 6-bits.

En el audio re-cuantizado a 6 bits se escuchan saltos de amplitud en el mensaje. La
calidad del audio en términos de legibilidad ha disminuido.

Finalmente, se re-cuantiza el audio a 3 bits (Figura 12). A diferencia de los casos an-
teriores, la señal re-cuantizada no tiene contenido inteligible (es decir, no se entien-
de lo que se dice), dado que la amplitud dista significativamente de la señal original
cuantizada a 16 bits (Figura 4).

bits = 3
audio_3bit = (audio* 2**bits).astype(int)
audio_3bit = audio_3bit / 2**bits
librosa.display.waveplot(audio_3bit, sr=fs)
IPython.display.Audio(audio_3bit, rate=fs)

Figura 12. Ejemplo de señal de voz cuantizada a 3-bits.

23PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Posteriormente, seleccionamos el archivo music.wav el cual tiene también 16 bits de
resolución. Aplicaremos dos re-cuantizaciones: de 8 bits y de 3 bits.

Re-cuantización a 8 bits del registro de música
bits = 8
music_8bit = (music* 2**bits).astype(int)
music_8bit = music_8bit / 2**bits
fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
librosa.display.waveplot(music_8bit, sr=fs2, ax=ax[0])
ax[0].set(title=’Música re-cuantizada a 8 bits’)
ax[0].label_outer()

Re-cuantización a 3 bits del registro de música
bits = 3
music_3bit = (music* 2**bits).astype(int)
music_3bit = music_3bit / 2**bits
librosa.display.waveplot(music_3bit, sr=fs2, ax=ax[1])
ax[1].set(title=’Música re-cuantizada a 3 bits’)
ax[1].label_outer()

Con la re-cuantización a 8 bits (Figura 13a), la señal es muy similar a la original cuan-
tizada a 16 bits (Figura 6); mientas que la re-cuantizada a 3 bits (Figura 13b), tanto
gráficamente como de forma auditiva, se aleja de la señal original.

Figura 13. Ejemplo del efecto de re-cuantización de la señal de música a 8 bits y a 3 bits.

Por lo anterior, es evidente que la selección de la cantidad de bits de resolución jue-
ga un papel muy importante en la calidad de la señal discreta/digital. En la siguiente
subsección abordaremos las implicaciones que tiene a nivel de costo de almacena-
miento y de transmisión el valor de bits de resolución seleccionado.

24 Dora Maria Ballesteros, Diego Renza

1.3.	 COSTO DE ALMACENAMIENTO/TRANSMISIÓN
EN TÉRMINOS DE LA FRECUENCIA DE MUES-
TREO Y NÚMERO DE BITS DE RESOLUCIÓN

Hasta aquí hemos evidenciado la importancia de seleccionar adecuadamente el va-
lor de frecuencia de muestreo y de bits de resolución cuando vamos a convertir una
señal continua/análoga en discreta/digital. Recordemos que la notación “continua” y
“discreta” hace alusión a la variable independiente (típicamente el tiempo), mientras
que “análoga” y “digital” corresponde con la amplitud de la señal (ej. voltios., amperes,
entre otros). Si la cantidad de valores en un rango de tiempo es infinita, la señal es
continua; en caso contrario, es discreta. De forma similar, si la cantidad de valores
diferentes de amplitud en un rango es infinita, la señal es análoga; en caso contrario,
es digital.

Aunque podríamos pensar que tanto la f_s seleccionada como los bits de resolución
deberían ser los más altos posibles en beneficio de la calidad de la señal (similitud
con la señal continua/análoga original), debemos tener presente que existe un costo
asociado con el almacenamiento y la transmisión de la señal. Este concepto lo ex-
plicaremos a través de dos casos.

Caso 1:
Supongamos que se ha digitalizado una señal de voz de 2.777 horas (exacta-
mente 10.000 segundos), con fs = 24 kHz y 32 bits de resolución. Entonces,
la cantidad de bits total de la señal digital/discreta es:

cantidad = Time* fs *res [bits]			 Ecuación 2

Donde Time es la duración de la señal en segundos, fs es la frecuencia de
muestreo, y res es la cantidad de bits de resolución.

De tal forma que, cantidad = 10.000 * 24.000 * 32 = 7.68 Gb, que corres-
ponde a 960 MB.

Caso 2:
La misma señal de voz del Caso 1 se digitalizó con fs = 8 kHz y 16 bits de
resolución. Entonces, cantidad = 10.000 * 8.000 *16 = 1.28 Gb, que equi-
vale a 160 MB.

Supongamos ahora que nuestro plan de Wi-Fi es de 10 MBps (donde Bps: bytes por
segundo) y queremos descargar la señal de voz que se encuentra en dos páginas de
internet. La primera página utilizó los parámetros de conversión del Caso 1; mien-
tras que la segunda página utilizó los parámetros de conversión del Caso 2. Enton-

25PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

ces, la descarga del archivo en la primera página de internet tomaría 96 segundos (1
minuto y 36 segundos), mientras que, en la segunda página de internet tomaría 16
segundos. Es evidente que preferiríamos descargar el archivo de la segunda página
de internet porque nos tomaría la sexta parte en relación con el tiempo de descarga
en la primera página.

Pero ¿la calidad de la señal discreta/digital obtenida con los parámetros de conver-
sión del Caso 2 es lo suficientemente buena? La respuesta es sí, dado que, tanto la fs
como la resolución son adecuados para señales de voz. No es necesario discretizar
una señal que solo contiene voz con una fs = 24 kHz, dado que, como vimos pre-
viamente, la mayor parte de la energía de la señal se encuentra en las frecuencias
inferiores a 1 kHz. Adicionalmente, la resolución de 16 bits permite cambios en el
código digital para valores de amplitud muy pequeños.

Como conclusión, los valores de f_s y bits de resolución no deberían ser tan
pequeños que nos degraden la calidad de la señal, pero tampoco excesivamente
altos, que impliquen altos costos de almacenamiento y/o transmisión de la señal.

1.4.	 EFECTO EN EL ESPECTRO DE MUESTREAR UNA
SEÑAL DE TIEMPO CONTINUO

En el canal de YouTube1 podrás encontrar el video titulado “Espectro señales discre-
tizadas” en el que se explica paso a paso el efecto de muestrear una señal continua
en términos de su espectro. Este concepto lo explicaré de forma matemática a
continuación.

Primero, partimos de una señal continua en el dominio del tiempo, la cual posee un
número infinito de valores de tiempo en el rango de [ti tf], donde ti es el tiempo
inicial de la señal, y tf es el tiempo final. Por ejemplo, supongamos que ti = 0 s, mien-
tras que tf = 10 s. Esa señal la vamos a denominar x(t) y su espectro X(f).

Es decir,

	 	 FT
		 x(t) → X(f) 	 	 Ecuación 3

Supongamos que el espectro de la señal x(t) está comprendido en el rango [0 4]kHz,
por lo que decidimos muestrear la señal con fs = 8 kHz. La forma de hacerlo es multipli-
car x(t) con un tren de impulsos periódico de amplitud igual a 1 y T = 1 ⁄ fs, que denomi-
naremos m(t). En nuestro caso, el periodo del tren de impulsos es T=1⁄8kHz=125 μs. El
espectro de m(t) lo denominaremos M(f), el cual corresponde a otro tren de impulsos
cuya amplitud es 1⁄T y espaciado cada fs .
1 https://www.youtube.com/channel/UCrasAFtm_6B9vOIShGtl1ig

26 Dora Maria Ballesteros, Diego Renza

Es decir,

 		 FT
		 m(t) → FT M(f) 		 Ecuación 4

El efecto en el dominio del tiempo de multiplicar x(t) con m(t), es que la señal
continua queda muestreada cada T segundos, obteniendo una señal discreta que de-
nominaremos x[n]. En el dominio de la frecuencia, el efecto es la convolución entre
los espectros de X(f) y M(f), es decir, se generan “réplicas” del espectro X(f) cada
fs Hz. A este espectro resultante lo denominaremos Xm (f), así:

		 DFT

	 	 x[n] → Xm (f)		 Ecuación 5

El efecto de réplicas en el espectro se explica recordando que cuando se convo-
luciona una señal por un impulso desplazado en k, el resultado es la misma señal
desplazada en k. De tal forma que la convolución de X(f) con el impulso ubicado en
el origen es el mismo espectro X(f); la convolución de X(f) con el impulso ubicado
en fs es X(f - fs); la convolución de X(f) con el impulso ubicado en 2 fs es X(f - 2 fs); y
así sucesivamente. Teniendo en cuenta que la señal m(t) contiene infinitos impulsos
separados fs, entonces, la cantidad de réplicas de X(f) es también infinita y están
separadas fs,, Adicionalmente, su amplitud se verá afectada por el valor 1⁄T.

Hasta aquí, vamos a resumir lo explicado anteriormente:

Tabla 2. Muestreo con tren de impulsos de duración infinita y su efecto en frecuencia.

Ahora bien, teniendo en cuenta que en la práctica el tren de impulsos es de duración
finita, podemos multiplicar m(t) por una ventana w[n], para limitar la duración del tren
de impulsos en el rango [ti tf]. Entonces, en el dominio de la frecuencia, el espectro
del tren de impulsos, M(f), se convoluciona con el espectro de la ventana, W(f).

27PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Dado que existen diversos tipos de ventana y que cada una tiene un espectro dife-
rente, se expresará de forma general, tanto la señal en el dominio del tiempo, como
en el dominio de la frecuencia, así:
			 DFT		
			 w[n] → W(f)		 Ecuación 6

En la Tabla 3 se presenta el efecto de muestreo de la señal x(t) con el tren de impul-
sos de duración finita. Al final de todo este proceso, el espectro de la señal x(t) no
solamente se replica, sino que se distorsiona ligeramente, debido a la convolución
en el dominio de la frecuencia entre (X(f) ⊗ M(f)) con W(f).

Antes de transmitir la señal muestreada, se aplica un filtro pasa-bajo, para obtener
únicamente la réplica ubicada en el origen.

Tabla 3. Muestreo con tren de impulsos de duración finita y su efecto en frecuencia.
 

29PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

CAPÍTULO 2.

Notación en el Mundo discreto
Después de abordar el puente entre el mundo análogo/continuo con el mundo
digital/discreto, nos introduciremos en la notación que se utiliza en procesamiento
digital de señales.

Al finalizar el capítulo, deberás estar en capacidad de:

1. 	 Expresar en el dominio Z una señal en tiempo discreto de duración finita.
2. 	 Convertir una ecuación de entrada-salida en una función de transferencia
	 en el dominio Z.
3. 	 Dibujar en diagramas de bloques un sistema FIR.
4. 	 Identificar si un filtro digital es FIR o IIR a partir de la ecuación de entra	
	 da-salida, la respuesta al impulso, o la función de transferencia del sistema.

En muchos libros de Procesamiento Digital de señales encontrarás como tema in-
faltable la Transformada Z (conocida como TZ) con su matemática, y ecuaciones, y
de pronto pensarás que es un tema muy difícil de abordar. Pues estás equivocado, la
TZ es una representación muy amigable de las señales discretas, la cual nos ayuda a
modelar el comportamiento de un sistema discreto a través de su entrada y salida.
De una forma muy intuitiva vamos poco a poco a conocer en qué consiste la TZ y
cómo nos apoya en la representación y diseño de los filtros digitales para señales
1D.

2.1. 	REPRESENTACIÓN DE UNA SEÑAL DISCRETA
EN TÉRMINOS DE IMPULSOS DESPLAZADOS Y
NOTACIÓN Z

Partamos de la señal x[n] de la Figura 14, la cual contiene 10 muestras comprendidas
en el rango [-4 5]. Recuerda que en el dominio discreto no hablamos de segundos,
sino de muestras, y que solamente existen valores de n enteros.

30 Dora Maria Ballesteros, Diego Renza

Figura 14. Ejemplo de señal en el dominio discreto.

Esta señal la podemos dibujar en lenguaje Python, con el siguiente código:

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
n = np.linspace(-4,5, 10)
print(n)
x = np.array([-2, -3, -4, 2, 3, 4, -1, -5, -1, 5])
print(x)
plt.stem(n,x, use_line_collection=”True”)

Podemos representar esta señal de varias formas, por ejemplo:

x(-4) = -2
x(-3) = -3
x(-2) = -4
x(-1) = 2
x(0) = 3
x(1) = 4
x(2) =- 1
x(3) =- 5
x(4) =- 1
x(5) = 5

En términos de impulsos desplazados, así:

x[n] = -2δ[n+4] - 3δ[n+3] - 4δ[n+2] + 2δ[n+1] + 3δ[n] + 4δ[n-1] - δ[n-2] - 5[n-3]
- δ[n-4] + 5δ[n-5]

Y de forma compacta, así:

31PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Supongamos que ahora transformamos la señal al dominio Z, es decir que:
 			 TZ

x[n] → X(z)) Ecuación 7

Obteniendo para esta señal:
	

X(z)=-2z4 - 3z3 - 4z2 + 2z1+ 3z0 + 4z-1 - z-2 - 5z-3 - z-4 + 5z-5

¿Qué similitudes encuentras entre x[n] con X(z)?

Resuelve esta pregunta antes de leer la respuesta que se encuentra a continuación.

Podemos observar que:
a)	 Los impulsos que se encuentran ubicados a la izquierda del origen, su TZ co-

rresponde a una potencia positiva de z.
b)	 Los impulsos que se encuentran ubicados a la derecha del origen, su TZ co-

rresponde a una potencia negativa de z.
c)	 Las amplitudes y signos de los impulsos se conservan.
d)	 La TZ del impulso ubicado en el origen corresponde a la amplitud del impulso

(dado que z0=1).

De forma intuitiva hemos llegado a la ecuación que relaciona el dominio
discreto con el dominio z, así:

X(z)≡∑k=-∞ x(k) z-k Ecuación 8

Donde x(k) es la amplitud de la señal para n=k, mientras que z es una variable com-
pleja con la cual se transforma del dominio del tiempo al dominio de la frecuencia.
Para señales discretas, podemos decir que si la Transformada de Fourier existe,
entonces su resultado coincide con la TZ de la señal haciendo z=ejω, es decir, para
|z|=1.

2.2.	 MODELANDO SISTEMAS DISCRETOS
Un sistema discreto es aquel en el que tanto la señal de entrada, como la de salida,
son discretas, es decir, que tienen un número finito de muestras en un rango (de
tiempo) seleccionado. Estos sistemas se pueden representar por ecuaciones de en-
trada-salida, funciones de transferencia y diagramas de bloques.

∞

32 Dora Maria Ballesteros, Diego Renza

Supongamos que tenemos un sistema discreto con la siguiente ecuación de entra-
da-salida:

y[n]= x[n] + x[n - 1] + x[n - 2]

Entonces, para calcular la salida en el tiempo discreto actual necesitamos conocer la
entrada en el mismo tiempo discreto actual, la entrada en el tiempo discreto ante-
rior, y la entrada en dos tiempos discretos anteriores. Posteriormente, se promedian
esos tres valores.

Para reescribir la ecuación de entrada-salida en el dominio Z, es necesario que co-
nozcamos el efecto de un retardo de la señal en el dominio temporal.

Específicamente,

	 si x[n] → X(z), ⇒ x[n-1] → z-1 X(z)	 Ecuación 9

Y de forma general,

x[n-k] → z-k X(z) Ecuación 10

Entonces, x[n-2] →z-2 X(z).

Aplicando el concepto anterior, reescribimos la ecuación de entrada-salida del sis-
tema en el dominio Z, así:

Y(z)=X(z) + z-1 X(z) + z-2 X(z)

Factorizamos el término X(z), y lo pasamos a dividir al lado izquierdo de la ecuación,
obteniendo:

Y(z) = 1 + z-1 + z-2

El resultado anterior se conoce como la Función de Transferencia del sistema, H(z).

Te preguntarás si existe alguna relación entre H(z) y h[n]. La respuesta es que sí.
Específicamente, H(z) es la TZ de la respuesta al impulso del sistema, es decir,

		 h[n] → H(z)≡ Y(z)	 Ecuación 11

Recuerda que el operador “≡” significa “por definición es igual a”.

Entonces, un sistema LTI (Lineal e Invariante en el Tiempo) se puede caracterizar
tanto por h[n] en el dominio del tiempo discreto, como por H(z) en el dominio de
Z.

3

TZ TZ

TZ

TZ

3

3X(z)

TZ

X(z)

33PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Finalmente, nos queda la representación del sistema por diagrama de bloques. Para
ello, dibujamos nuestra ecuación de entrada-salida, partiendo de x[n], incluyendo
bloques de retardo (es decir bloques z-1), sumadores, y amplificadores (o atenuado-
res), para finalmente obtener y[n].

Para el sistema que hemos utilizado en esta sección, su diagrama de bloques es:

Figura 15. Ejemplo de diagrama de bloques de un sistema discreto.

En este caso, dado que tanto x[n], x[n-1], como x[n-2], están ponderados por el
mismo escalar, entonces, el bloque de amplificación se ubica después del sumador.
En otros casos en los que cada término tenga su propia ponderación, es necesario
incluir un bloque de amplificación por término de la ecuación, previo al bloque su-
mador.

2.3. 	 INTRODUCCIÓN A LOS SISTEMAS DISCRETOS FIR vs IIR
En esta sección nos centraremos en la diferencia que existe entre los filtros FIR y
los filtros IIR, de acuerdo con su respuesta al impulso.

Para ello, vamos a utilizar cuatro casos.

Caso 1:

	 Nuestro sistema discreto tiene la siguiente relación entrada-salida:

Donde a_k es un escalar, y k está comprendida entre [-2 2]. Este sistema contiene
cinco términos, los cuales son x[n + 2], x[n + 1], x[n], x[n - 1] y x[n - 2] .

Vamos a reescribir la ecuación en el dominio Z, así:

34 Dora Maria Ballesteros, Diego Renza

Y ahora pasamos a dividir X(z) a la parte izquierda de la ecuación, obteniendo:

Expandamos los términos de la función de transferencia, así:

¿Qué señal en el dominio del tiempo discreto tiene como transformada Z el valor
de H(z) que acabamos de encontrar?

La respuesta es,

Teniendo en cuenta que la cantidad de impulsos es finita, este sistema es FIR (Finite
Impulse Response). Adicionalmente, es simétrico (espejo) respecto al origen y no
causal. Por lo cual, la salida depende de la señal de entrada en valores futuros, y no
se puede trabajar en tiempo real.

Caso 2:

La relación entrada-salida del sistema, es:

Donde ak es un escalar, para los valores de k comprendidos entre [0 4)]. Este
sistema, al igual que el del Caso 1, contiene cinco términos (pero ahora desde x[n]
hasta x[n-4]).

En el dominio Z, la ecuación queda expresada de la siguiente forma:

Y su función de transferencia, así:

En el dominio del tiempo, la respuesta al impulso es:

h[n] = a0 δ[n] + a1 δ[n - 1] + a2 δ[n - 2] + a3 δ[n - 3] + a4 δ[n - 4]

De forma similar al Caso 1, el sistema es FIR. No obstante, para este ejemplo la res-
puesta al impulso no está centrada en el origen, sino que inicia en n=0. Entonces, es
un sistema causal y la salida del sistema se puede calcular en tiempo real.

35PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Caso 3:

En este tercer caso, la relación entrada-salida del sistema, es:

A diferencia de los ejemplos anteriores, la cantidad de términos a la derecha de la
igualdad no es finita. Tenemos x[n], x[n-1], x[n-2], y así sucesivamente hasta x[n-∞].

En el dominio Z, la ecuación queda así:

Y su función de transferencia, es:

En el dominio del tiempo, la respuesta al impulso es:

h[n] = δ[n] + δ[n - 1] + δ[n - 2]+⋯+δ[n - ∞]

Como la cantidad de impulsos en h[n] es infinita, este sistema es IIR (Infinite Impulse
Response). Por otro lado, como todos los impulsos se ubican a la derecha del origen
(o en el origen), entonces el sistema es causal. Teniendo en cuenta que el diagrama
de bloques requeriría de un número infinito de términos de retardo y de multipli-
cadores (si cada impulso tuviese una amplitud diferente), entonces, es común que se
reescriba el sistema, como se expresa en el siguiente caso.

Caso 4:

La relación entrada-salida del sistema se define por la ecuación:

y[n] = x[n] + y[n - 1]

Para obtener la señal de salida, es necesario conocer la señal de entrada en el mismo
instante de tiempo discreto, y la señal de salida un instante anterior.

Este sistema es el mismo presentado en el Caso 3, como verificaremos a continua-
ción.

Partiendo de,

y[n] = x[n] + x[n - 1] + x[n - 2] + x[n - 3] +⋯+ x[n-∞]

Al retardar en una posición todos los términos de la ecuación anterior, tendremos:

y[n-1] = x[n - 1] + x[n - 2] + x[n - 3] + x[n - 4] +⋯+x[n - ∞]

36 Dora Maria Ballesteros, Diego Renza

Por lo cual, podremos re-escribir y[n] así:

y[n] = x[n] + x[n - 1] + x[n - 2] + x[n - 3] + ⋯+ x[n - ∞] = x[n] + y[n - 1]
y[n - 1]

Entonces, hemos verificado que nuestro sistema del Caso 4 es el mismo sistema del
Caso 3. Por lo tanto, es IIR y causal.

Por otro lado, en el dominio Z obtenemos que:

Y(z) = X(z)+z-1 Y(z)

Y reordenando el resultado anterior:

Y(z) - z-1 Y(z) = X(z),

Y(z){1 - z-1} = X(z)

Llegamos a la función de transferencia del sistema:

Y(z) = H(z) = 1
				 X(z)		 1-z-1

De forma general, si en la ecuación de entrada-salida existe algún término a la dere-
cha de la ecuación de la forma y[n-k], para k entero positivo o negativo, entonces el
sistema es IIR. También es IIR si se necesita conocer infinitos valores de la señal de
entrada, de la forma x[n-k]. Por otro lado, en términos de causalidad, si es necesario
conocer valores pasados y/o presentes de la entrada y/o salida, entonces el sistema
es causal; en caso contrario es no causal. Por lo cual, al unir los conceptos anterio-
res, tenemos que el sistema y[n] = 0.9x[n] + 0.1y[n - 2] es IIR causal, mientras que,
el sistema y[n] = 0.9x[n] + 0.1y[n + 2] es IIR no causal.

Adicionalmente, en términos de la función de transferencia H(z), si solamente tiene
un polinomio en el numerador (dependiente de z) y el número de términos es finito,
entonces el filtro es FIR. En caso contrario, el filtro es IIR. Si los polinomios solamen-
te tienen términos de z negativos, el filtro es causal; en caso contrario, es no causal.

 

37PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

CAPÍTULO 3.

Mis primeros filtros digitales
Sé que en este punto del libro ya querrás conocer ejemplos concretos de filtros
digitales y su efecto en señales 1D (uni-dimensionales). Este Capítulo está diseñado
precisamente para que empieces a filtrar señales 1D con filtros muy sencillos, co-
nocidos como filtros de promedio. Adicionalmente, conocerás su contraparte IIR
denominada Integrador Leaky.

Al finalizar el capítulo, deberás estar en capacidad de:

1.	 Diseñar filtros pasa-bajos para señales 1D, específicamente filtros de pro-
medio.

2.	 Filtrar señales 1D con filtros de promedio.
3.	 Explicar el comportamiento en frecuencia de los filtros de promedio, tanto

para valores de M par como impar.
4.	 Explicar las diferencias entre el filtro de promedio y el filtro Integrador

Leaky.

3.1.	 INTRODUCCIÓN AL FILTRO DE PROMEDIO

Para entender en qué consiste el filtro de promedio, es necesario que previamente
recordemos cómo se caracteriza un sistema Lineal e Invariante en el Tiempo (LTI).
Específicamente, la salida del sistema, y[n], se encuentra calculando la convolución
entre la señal de entrada, x[n], y la respuesta al impulso, h[n].

Es decir, si el sistema es LTI, se cumple que:

	 y[n] = x[n]⨂h[n] = ∑k=-∞ x[k]h[n - k] 		 Ecuación 12

Adicionalmente, es necesario recordar en qué consiste convolucionar x[n] con un
impulso ubicado en el origen, o desplazado, por ejemplo:

x[n] ⊗ δ[n] = x[n],

x[n] ⊗ δ[n - 1] = x[n - 1],

x[n] ⊗ δ[n - 2] = x[n - 2],

∞

38 Dora Maria Ballesteros, Diego Renza

x[n] ⊗ δ[n + 1] = x[n + 1],

x[n] ⊗ δ[n + 2] = x[n + 2]

Entonces,

	 x[n] ⊗ δ[n - k] = x[n - k] k ϵ Z		 Ecuación 13

Si unimos el concepto de la Ecuación 10 con el de la Ecuación 11, podremos identi-
ficar que si y[n] = x[n - k], entonces su respuesta al impulso es h[n] = δ[n - k].

De forma general,

si y[n] = ∑k=0 x[n - k] ,

se tiene que h[n]=∑k=0 δ[n - k] .

Ahora bien, si a la respuesta al impulso obtenida anteriormente la escalamos por el
factor 1⁄M, obtenemos un filtro de promedio causal.

En resumen, un filtro de promedio (MAF: Moving Average Filter) es un sistema
LTI cuya respuesta al impulso contiene M impulsos consecutivos de amplitud
1⁄M, que típicamente inicia en el origen y termina en M-1, donde M-1 corres-
ponde al orden del filtro, y M es la cantidad de términos (pasados, presente
y/o futuros) de la señal de entrada. El mínimo valor de M=2 (es decir, filtro de
primer orden).

La respuesta al impulso de los filtros en promedio causales se define como:

	 h[n] = 1 ∑k=0 δ[n - k] 	 Ecuación 14

	
M

	
Cuya función de transferencia, es:

	 H(z)= 1 ∑k=0) z-k	 Ecuación 15

Gráficamente, la respuesta al impulso de un filtro de promedio causal con M=11,
es:

Figura 16. Respuesta al impulso de un filtro de promedio causal, M=11.

M-1

M-1

M-1

M-1

M-1

M

39PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

La cual se puede dibujar con el siguiente código en Python:

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
M=11
n = np.linspace(0,M-1,M)
x = np.ones([M])/M
plt.stem(n,x, use_line_collection=”True”)

Este filtro de promedio también puede ser simétrico respecto al origen. En ese
caso, típicamente se trabaja con M impar, cuya respuesta al impulso se define así:

	 h[n] = 1 ∑k=-(M-1) ⁄2) δ[n - k] 		 Ecuación 16

Suponiendo que M=11, entonces:

h[n] = 1 ∑ δ[n - k]

El cual corresponde a un filtro de promedio no causal (Figura 17). Entonces,
para calcular la salida del sistema es necesario conocer la entrada en el tiempo
actual, cinco valores pasados y cinco valores futuros del tiempo actual. Es decir,
y[n] = 1/11 {x[n] + x[n - 1] + x[n - 2] + x[n - 3] + x[n - 4] + x[n - 5] + x[n + 1] + x[n +
2] + x[n + 3] + x[n + 4] + x[n + 5]}.

Figura 17. Respuesta al impulso de un filtro de promedio no causal, M=11.

Aunque el orden del filtro de la Figura 16 es el mismo del de la Figura 17, la principal
diferencia radica en que en el primero se puede calcular la salida en tiempo real,
mientras que, en el segundo es necesario que previamente se haya almacenado (o
transmitido) la señal de entrada.

3.2.	 EFECTO DEL FILTRO DE PROMEDIO
El efecto del filtro de promedio en una señal 1D consiste en suavizarla, es decir,
reducir los rizos que pueda contener la señal, manteniendo su forma. En otras pala-
bras, el filtro de promedio actúa como un filtro pasa-bajos.

M-1

M

11

5

k=-5

40 Dora Maria Ballesteros, Diego Renza

Para ilustrar este efecto, primero crearemos una señal senoidal a la cual le adiciona-
remos ruido, y posteriormente la filtraremos con filtros de promedio de diferente
orden.

El código en Python paso a paso es el siguiente:

Paso 1: importar librerías de trabajo

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
from scipy import signal
import math

Paso 2: generar una señal sin ruido

step = 0.001
t = np.arange(0,2,step)
fs = 1 / step
print(fs)
frecuencia = 2 # Hz
frad = frecuencia * 2 * math.pi
x1 = np.sin(frad*t)
plt.plot(t,x1)
plt.title(‘señal sin ruido’)

La señal que se obtiene es una señal senoidal de 2 segundos de duración, con
f = 2 Hz, fs = 1 kHz, y amplitud en el rango [-1 1] (Ver Figura 18). Recorde-
mos que utilizamos plt.plot para que tenga apariencia de señal continua,
aunque realmente corresponde a una señal discreta.

Figura 18. Señal senoidal sin ruido.

Paso 3: generar ruido aleatorio

samples = len(x1)
An= 0.5
noise = An*np.random.rand(samples) - An/2
plt.plot(t,noise)
plt.title(‘Ruido’)

En este paso se obtiene una señal que corresponde a ruido de 2 segundos de du-
ración, cuya amplitud se encuentra en el rango [-0.25 0.25)]. (Ver Figura 19).

41PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 19. Ruido aleatorio.

Paso 4: sumar la señal senoidal con la señal de ruido

xnoise = x1 + noise
plt.plot(t,xnoise)

plt.title(‘Señal con ruido’)

La nueva señal (Figura 20) corresponde a una señal senoidal con ruido de fondo,
conservando la frecuencia fundamental de la señal de la Figura 18. No obstante, la
amplitud está ahora en el rango [-1.25 1.25)].

Figura 20. Señal senoidal con ruido de fondo.

Paso 5: aplicación de filtro de promedio (M=7, 11, y 111)

a = 1
M = 7
b7 = np.ones([M])/M
y7 = signal.filtfilt(b7, a, xnoise)

M = 11
b11 = np.ones([M])/M
y11 = signal.filtfilt(b11, a, xnoise)

M = 111
b111 = np.ones([M])/M
y111 = signal.filtfilt(b111, a, xnoise)

Se grafican los resultados
plt.rcParams[“figure.figsize”] = (20,10)
plt.subplot(2,2,1)
plt.plot(t,xnoise)
plt.title(‘a)’)
plt.subplot(2,2,2)
plt.plot(t,y7)

42 Dora Maria Ballesteros, Diego Renza

plt.title(‘b)’)
plt.subplot(2,2,3)
plt.plot(t,y11)
plt.title(‘c)’)
plt.subplot(2,2,4)
plt.plot(t,y111)
plt.title(‘d)’)
plt.show()

Se utiliza la instrucción filtfilt de la librería signal para aplicar el filtro previamente
diseñado (con np.ones([M])/M) a la señal xnoise. Esta instrucción permite filtrar
señales 1D con filtros FIR o IRR. En el caso de filtros FIR, como corresponde al
filtro de promedio, es necesario trabajar con a = 1.

Como resultado del código anterior se obtienen cuatro sub-gráficas, las cuales se
presentan en la Figura 21.

Figura 21. Resultado de filtrar una señal senoidal ruidosa con un filtro de promedio: a) señal
de entrada, b) señal filtrada con M=7, c) señal filtrada con M=11, d) señal filtrada con M=111.

Al comparar los resultados obtenidos con filtros de promedio con diferentes M, se
aprecia que a medida que M aumenta el efecto de suavizado es mayor, es decir, se
reduce en mayor medida el rizado (ruido de fondo) de la señal. No obstante, como
veremos en la siguiente sección, no se recomienda aumentar abruptamente el orden
del filtro, porque se puede producir un efecto no deseado al eliminar componentes
de frecuencia de la señal que son importantes. Se sugiere que el estudiante utilice
un M alto (por ejemplo, M=501), y obtenga sus propias conclusiones del efecto del
filtro sobre la señal.

3.3.	 RESPUESTA EN FRECUENCIA DEL FILTRO DE PROMEDIO
En esta sección nos centraremos en conocer y comprender el impacto que tiene
el valor de M en la respuesta en frecuencia del filtro de promedio. El filtro MAF es

43PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

un filtro pasa-bajos cuya frecuencia de corte disminuye a medida que aumenta el
valor de M. A diferencia de los filtros análogos, en los que la frecuencia de corte la
expresamos (típicamente) en Hz, en el caso de los filtros digitales, esta frecuencia
se encuentra normalizada en el rango [0 π)], por ejemplo 0.2π, con unidades
[rad⁄muestra]. El rango total de la respuesta en frecuencia del filtro digital (bilateral)
corresponde a [-π π)].

Como primer paso, vamos a reescribir la respuesta al impulso del filtro de prome-
dio, de la forma:

	 h[n] = u[n] - u[n-M]	 Ecuación 17

		
M

	
donde M - 1 es el orden del filtro. Este resultado es equivalente al obtenido en la
Ecuación 14.

Como segundo paso, vamos a calcular la DTFT (Transformada de Fourier de Tiem-
po Discreto) de h[n], es decir:

Obteniendo que,

Cuando graficamos la magnitud de la respuesta en frecuencia del filtro de promedio,
encontramos que presenta un comportamiento especial, que lo podemos resumir
como:

•	 Todos los filtros de promedio tienen un lóbulo principal alrededor de ω = 0,
y varios lóbulos secundarios que inician en -π y terminan en π.

•	 La amplitud de los lóbulos secundarios disminuye a medida que se alejan de
ω=0. Cada lóbulo secundario es más pequeño que su antecesor (entre [0
π]) y existe un efecto espejo con las frecuencias negativas.

•	 La cantidad de lóbulos en el rango [-π π] es igual a M-1. Hay un lóbulo
principal y M-2 lóbulos secundarios.

•	 Si el filtro tiene un M par, el primer “cruce por cero” y el último “cruce por
cero” ocurren en las frecuencias -π y π, respectivamente. En caso contrario, si
M es impar, en esas frecuencias no existirá cruce por cero.

•	 En todos los casos, los cruces por cero se encuentran ubicados en 2πk/M. El
rango de k es [1 (M-1))⁄2] para M impar, y [1 M⁄2] para M par.

44 Dora Maria Ballesteros, Diego Renza

Nota: se dibuja la magnitud de la respuesta en frecuencia del filtro, por lo cual no
tendrá valores negativos y formalmente no existirán los “cruces por cero”. Sin
embargo, sí existen valores en los cuales la amplitud ha disminuido, llega a cero, y
vuelve a aumentar, los consideraremos como “cruces por cero”.

Por ejemplo, para M = 7, el filtro de promedio tiene un lóbulo principal y cinco ló-
bulos secundarios, de los cuales dos lóbulos y medio (secundarios) se encuentran
en las frecuencias positivas (Ver Figura 22). Dado que M es impar, el último cruce
por cero en las frecuencias positivas (al igual que el primer cruce por cero en las
frecuencias negativas) no ocurre en ω=π.

Figura 22. Magnitud de la respuesta en frecuencia de un filtro de promedio, M=7.

Para obtener la gráfica de la magnitud de la respuesta en frecuencia del filtro MAF,
utilizamos el siguiente código en Python:

from scipy import signal
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
import math
M = 7
M7 = np.ones([M])/M
a = 1
w1, v1 = signal.freqz(M7, a)
plt.rcParams[“figure.figsize”] = (14,8)
ax = plt.subplot(2, 1, 1)
plt.plot(w1, np.abs(v1))
plt.title(‘Respuesta en frecuencia filtro digital de promedio, M=7’)

La instrucción signal.freqz de la librería de scipy de Python permite graficar la
respuesta en frecuencia de filtros digitales, tanto FIR como IIR. Las entradas de esta
instrucción corresponden a los coeficientes de los polinomios tanto del numerador
como del denominador de la función de transferencia del filtro digital. En el caso
del filtro MAF, por ser un filtro FIR, el denominador es una constante igual a uno, y
entonces, a la entrada “a” de la instrucción signal.freqz le asignamos el valor
de uno. El resultado corresponde al vector de frecuencias normalizadas, w1, y al
vector de amplitudes, v1. Con la instrucción np.abs(v1) se calcula la magnitud
de la respuesta en frecuencia del filtro digital.

45PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Podemos obtener cada uno de los cruces por cero del filtro de promedio, con el
siguiente código en lenguaje Python:

M=7

k=1, entonces
k=1
wc1= 2*math.pi/M
print(“frecuencia cruce por cero 1:”, wc1)

k=2, entonces
k=2
wc2= 2*math.pi*k/M
print(“frecuencia cruce por cero 2:”, wc2)

k=3, entonces
k=3
wc3= 2*math.pi*k/M
print(“frecuencia cruce por cero 3:”, wc3)

y obtendríamos:
frecuencia cruce por cero 1: 0.8975979010256552
frecuencia cruce por cero 2: 1.7951958020513104
frecuencia cruce por cero 3: 2.6927937030769655

Cuando el valor de M es alto, se recomienda utilizar una estructura anidada (por
ejemplo, ciclo for) para encontrar los cruces por cero del filtro digital, así:

M = 7
for k in range(1,int((M-1)/2)+1):
 wc= 2*3.14*k/M
 print(“frecuencia de cruce por cero”,k, “:”, wc)

Supongamos ahora que nuestro filtro trabaja con M = 31, ¿cuántos lóbulos secun-
darios tendrá? La respuesta es 29 lóbulos secundarios, por lo que, de forma similar
al caso anterior no se encontrarán cruces por cero en -π, ni en π. La gráfica se
presenta en la Figura 23.

Figura 23. Magnitud de la respuesta en frecuencia de un filtro de promedio, M=31.

Independiente del orden del filtro, tendremos que en ω = 0 la amplitud es igual a
uno. Se aprecia que de forma similar a la gráfica de la Figura 22, el último lóbulo
queda a “la mitad”, es decir, no llega a cero.

46 Dora Maria Ballesteros, Diego Renza

Los cruces por cero los obtenemos con el siguiente código en Python:

M = 31
for k in range(1,int((M-1)/2)+1):
 wc= 2*3.14*k/M
 print(“frecuencia de cruce por cero”,k, “:”, wc)

frecuencia de cruce por cero 1: 0.20258064516129032
frecuencia de cruce por cero 2: 0.40516129032258064
frecuencia de cruce por cero 3: 0.607741935483871
frecuencia de cruce por cero 4: 0.8103225806451613
frecuencia de cruce por cero 5: 1.0129032258064516
frecuencia de cruce por cero 6: 1.215483870967742
frecuencia de cruce por cero 7: 1.4180645161290324
frecuencia de cruce por cero 8: 1.6206451612903225
frecuencia de cruce por cero 9: 1.823225806451613
frecuencia de cruce por cero 10: 2.0258064516129033
frecuencia de cruce por cero 11: 2.2283870967741937
frecuencia de cruce por cero 12: 2.430967741935484
frecuencia de cruce por cero 13: 2.6335483870967744
frecuencia de cruce por cero 14: 2.836129032258065
frecuencia de cruce por cero 15: 3.0387096774193547

Como tercer ejemplo, utilizaremos un filtro con M par. Específicamente, si M = 8,
obtendremos una gráfica que contiene tres lóbulos secundarios en las frecuencias
positivas, y el último cruce por cero ocurre exactamente en ω = π (Ver Figura 24).

Figura 24. Magnitud de la respuesta en frecuencia de un filtro de promedio, M=8.

La respuesta en frecuencia se obtiene con el siguiente código en Python:

from scipy import signal
M = 8
M8 = np.ones([M])/M
a = 1
w1, v1 = signal.freqz(M8, a)
plt.rcParams[“figure.figsize”] = (14,8)
ax = plt.subplot(2, 1, 1)
plt.plot(w1, np.abs(v1))

Y los cruces por cero, así:

M = 8
for k in range(1,int((M)/2)+1):
 wc= 2*3.14*k/M
 print(“frecuencia de cruce por cero”,k,”:”, wc)

47PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

frecuencia de cruce por cero 1: 0.785
frecuencia de cruce por cero 2: 1.57
frecuencia de cruce por cero 3: 2.355
frecuencia de cruce por cero 4: 3.14

Finalmente, si comparamos la primera frecuencia de cruce por cero de los filtros
de promedio con M = 7, M = 8, y M = 31, podemos concluir que a medida que M
aumenta, la frecuencia del primer cruce por cero disminuye (es decir, cuando utili-
zamos un orden de filtro alto, la frecuencia de corte es baja). No obstante, indepen-
diente del valor de M, el filtro de promedio se comporta como un filtro pasa-bajos.

3.4.	 FILTRO INTEGRADOR LEAKY
Este filtro tiene un comportamiento parecido al filtro de promedio (efecto pasa-ba-
jo) cuando M ≥ 100. La ecuación de entrada-salida se define como:

	 y[n] = λy[n - 1] + (1 - λ)x[n]	 Ecuación 20

Cuya relación de λ y M está dada por:

 		 λ = M - 1	 Ecuación 21

		
M

De tal forma que si M = 100, entonces λ = 99⁄100 = 0.99.

Por lo que, para este caso específico la salida es:

y[n] = 0.99y[n - 1] + 0.01x[n]

Esto significa que, para obtener la salida en el momento actual se conserva en
gran parte la salida del momento anterior, y solamente una pequeñísima parte de
la entrada en el momento actual. Adicionalmente, si la entrada solo existe en un
momento específico (ej. x[n] = δ[n]), la salida será distinta de cero a partir de ese
momento en adelante.

Veamos precisamente cuál es la respuesta al impulso del filtro Leaky.

Reescribamos la ecuación 18 de la siguiente forma:

	 y[n] = λy[n - 1] + (1-λ)δ[n]	 Ecuación 22

Y supongamos que el sistema inicia en n = 0, es decir que antes de ese momento
tanto la entrada como la salida eran de amplitud igual a cero.

Entonces,

	

48 Dora Maria Ballesteros, Diego Renza

y(0) = 0.99y(-1) + 0.01δ[n], que es equivalente a y(0) = 0.01, dado que
y(-1) = 0, y x(0) = 0.01.

y(1) = 0.99y(0), que es equivalente a y(1) = 0.99 * 0.01, dado que x(1) = 0.

y(2) = 0.99y(1), que es equivalente a y(2) = 0.99 * 0.99 * 0.01, dado que
x(2) = 0.

y(3) = 0.99y(2), que es equivalente a y(3) = 0.99 * 0.99 * 0.99 * 0.01,
dado que x(3) = 0.

…. y(k)=0.99y(k-1), que es equivalente a y(k) = 0.99k
* 0.01.

De forma general, la respuesta al impulso del Filtro Leaky se expresa como:

	 h[n] = λn (1 - λ) 	 para n ≥ 0	 Ecuación 23

Examinando la ecuación 23 podemos concluir que este filtro es de respuesta al
impulso infinita, dado que, a partir de n = 0, las amplitudes de h[n] serán distintas
de cero.

A continuación, dibujaremos la ecuación de entrada-salida, utilizando un diagrama
de bloques:

Figura 25. Diagrama de bloques filtro Leaky.

Para obtener la salida con este tipo de filtros, se necesita una unidad de retardo, un
sumador y dos multiplicadores, independiente de M.

Ahora bien, dibujemos el diagrama de bloques para un filtro de promedio con
M = 100, y comparemos el uso de recursos.

Figura 26. Diagrama de bloques filtro de promedio, M=100.

49PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

En este caso, se necesitan 99 unidades de retardo, un sumador y un multiplicador.
Es claro que la cantidad de unidades de retardo es significativamente mayor que en
el filtro Leaky.

Lo que significa que si se quiere implementar un filtro que promedie el comporta-
miento de la señal de entrada en las últimas 100 o 1000 muestras (por ejemplo), es
más eficiente a nivel computacional utilizar una estructura como la de la Figura 25,
que como de la Figura 26.

3.5.	 GENERALIDADES DE LOS FILTROS DIGITALES
Iniciaremos este subcapítulo de generalidades de los filtros digitales, clasificándolos
en relación con su respuesta al impulso. Primero en términos de duración, y segun-
do en términos de cómputo. Posteriormente, revisaremos la definición de estabili-
dad de los filtros digitales, tomando como ejemplo el filtro de promedio y el Leaky.

Clasificación de los filtros digitales:

Si la respuesta al impulso del filtro es de duración finita, decimos que es FIR.
En caso contrario, decimos que el filtro es IIR.

Por otro lado, un filtro puede ser causal o no causal. Un filtro es causal si su
salida depende de la entrada en el mismo valor de tiempo (discreto) y/o de
valores pasados de tiempo. Y es no causal, si la salida depende de valores futu-
ros de la señal de entrada. Un filtro causal se puede ejecutar en tiempo real,
es decir, que a medida que ingresa la entrada al sistema se calcula su salida.
Mientras que, en filtros no causales, necesitamos conocer toda la señal de
entrada para calcular la salida del sistema.

Combinando las dos clasificaciones anteriores, se pueden tener filtros FIR
causales, FIR no causales, IIR causales e IIR no causales. Puedes revisar ejem-
plos de cada caso en el Capítulo 2.3.

Estabilidad de los filtros digitales:

Un filtro es estable si la salida del filtro es acotada para entradas acotadas. Es
decir, si se cumple con la siguiente condición:

Sea |x[n]| < M, |y[n]| < P, para M,P < ∞. Entonces ∑n|h[n]| < L para L<∞.

De tal forma que, TODOS los filtros FIR son estables. Por lo que, todos los filtros
de promedio son estables.

Vamos ahora a revisar la estabilidad en los filtros Leaky. Recordemos que su res-

50 Dora Maria Ballesteros, Diego Renza

puesta al impulso es de la forma h[n] = λn (1 - λ) para n ≥ 0. Entonces es necesario
evaluar dos posibles escenarios, cuando |λ| < 1 y cuando |λ| ≥ 1.

Escenario 1: |λ| < 1

En este caso, ∑n=-∞|h[n]| = |1 - λ| ∑n=-∞ |λ
n| = |1 - λ|{λ0+λ1+λ2+λ3+⋯+λ∞} es un

valor finito, dado que cada vez se suma un término más pequeño que el anterior.

Por ejemplo, supongamos que λ = 0.5, entonces |1 - λ| ∑n=-∞|λn| = |0.5|{0.50+ 0.51

+ 0.52 + 0.53+⋯+0.5∞} = 0.5 + 0.25 + 0.125 + 0.0625+⋯ = 1 Entonces, el filtro IIR

es estable. 	 		
 2	 2

Escenario 2: |λ| ≥ 1

En este caso, ∑n=-∞|h[n]| = |1 - λ| ∑n=-∞ |λ
n| = |1 - λ|{λ0+λ1+λ2+λ3+⋯+λ∞} es un

valor infinito, dado que cada vez se suma un término más grande que el anterior.

Por ejemplo, supongamos que λ = 2, entonces |1 - λ| ∑n=-∞|λn| = |-1|{20+ 21 + 22 +

23+⋯+2∞} =1 + 2 +4 + 8 + 16 + ⋯ + →∞ . Entonces, el filtro IIR es inestable.

En resumen, algunos filtros IIR son estables, y otros son inestables. En el caso
del filtro Leaky, es estable siempre y cuando se cumpla que |λ| < 1.

 

∞ ∞

∞

∞

∞∞

51PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

CAPÍTULO 4.

Metodos de diseño de filtros FIR
En este cuarto capítulo del libro vamos a conocer y a aplicar varios métodos o téc-
nicas de diseño de filtros FIR. Partiremos de los filtros ideales y comprenderemos
la razón por la cual no son realizables. Posteriormente, conoceremos el método
de muestreo en frecuencia, y finalizaremos con el método de ventaneo. De forma
simultánea abordaremos esta temática desde el punto de vista teórico, y a nivel de
simulación el lenguaje de programación Python.

Al finalizar el capítulo, deberás estar en capacidad de:

1.	 Explicar la razón por la cual los filtros ideales no son realizables.

2.	 Explicar el fenómeno de Gibbs a partir del truncamiento de la respuesta al
impulso de un filtro ideal.

3.	 Diseñar filtros (pasa-bajos, pasa-altos, pasa-banda) aplicando el método de
muestreo en frecuencia, apoyándose en Python para los cálculos.

4.	 Diseñar filtros (pasa-bajos, pasa-altos, pasa-banda) aplicando el método de
ventaneo, apoyándose en Python para los cálculos.

5.	 Explicar el comportamiento de los ceros en filtros FIR diseñados por los
métodos de promedio y ventaneo.

 
4.1.	 FILTROS ANÁLOGOS IDEALES
Para abordar el concepto de filtros ideales, debemos primero repasar la clasifica-
ción de los filtros respecto a la respuesta en frecuencia. Los filtros se clasifican en:
pasa-bajos, pasa-altos, pasa-banda y rechaza-banda.

En el caso de los filtros pasa-bajos, la banda de paso inicia en los 0 [Hz] y termina
en la frecuencia de corte del filtro, denominada fc. O de forma equivalente, inicia
en 0 [rad⁄seg] y termina en Wc, para Wc = 2πfc. A partir de la frecuencia de corte
inicia la banda de rechazo, en la cual el filtro idealmente atenúa por completo esas
frecuencias de la señal de entrada. Por lo tanto, en el filtro ideal la ganancia (G) en
la banda de paso es constante (típicamente G = 1), y en la banda de rechazo es cero.
En la frecuencia de corte se tiene una caída con pendiente infinita.

52 Dora Maria Ballesteros, Diego Renza

La respuesta en frecuencia del filtro pasa-bajo ideal se presenta en la Figura 27.

Figura 27. Respuesta en frecuencia de un filtro análogo pasa-bajo ideal.

En el caso del filtro pasa-alto ideal, la banda de rechazo inicia en 0 [Hz] y termina
en la frecuencia de corte. La banda de paso corresponde a las frecuencias mayores a
la fc. Tanto el filtro pasa-alto como el filtro pasa-bajo, tienen una sola banda de paso
y una sola banda de rechazo. La Figura 28 presenta la respuesta en frecuencia del
filtro pasa-altos ideal.

Figura 28. Respuesta en frecuencia de un filtro análogo pasa-alto ideal.

Los otros dos tipos de filtro son pasa-banda y rechaza-banda. El primero, tiene una
banda de paso y dos bandas de rechazo (Figura 29). El segundo, tiene dos bandas de
paso y una banda de rechazo (Figura 30). En ambos casos, se tienen dos frecuencias
de corte, denominadas fc1 y fc2.

Figura 29. Respuesta en frecuencia de un filtro análogo pasa-banda ideal.

53PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 30. Respuesta en frecuencia de un filtro análogo rechaza-banda ideal.

4.2.	 FILTROS DIGITALES IDEALES
En el caso de los filtros digitales, la respuesta en frecuencia bilateral la expresamos
en el rango [-π π)] con unidades [rad/muestra], o en el rango [-1 1] con unidades
[ciclo/muestra].

El filtro digital pasa-bajo ideal se presenta en la Figura 34.

Figura 31. Respuesta en frecuencia del filtro digital pasa-bajo ideal, valores en [rad/muestra].

Matemáticamente, se define como:

H(ejω) = {0 e.o.c.(en otro caso) con periodicidad de 2π	 Ecuación 24

Las características del filtro, son:

•	 Banda de paso completamente plana.

•	 Atenuación infinita en la banda de rechazo.

•	 Fase cero (sin retraso).

1 |ω|≤ωc

54 Dora Maria Ballesteros, Diego Renza

En el dominio del tiempo discreto, la respuesta al impulso del filtro (es decir, la
Transformada de Fourier Discreta Inversa: IDTFT), es igual a:

		 h[n] = sin(ωcn)	 Ecuación 25

La cual corresponde a una señal de duración infinita por ambos lados del eje n, co-
nocida como señal sinc.

Revisemos ahora la estabilidad de este filtro pasa-bajos ideal. Recordando la defini-
ción de estabilidad presentada anteriormente en este libro (Capítulo 3.5), se tiene
que el filtro es estable sí y solo si:

∑n|h[n]| < L para L<∞

Entonces, el filtro pasa-bajos ideal no es estable, independiente del valor de ωc

que

se seleccione, dado que la sumatoria de la magnitud de su respuesta al impulso no
es finita.

A partir del concepto anterior, el primer método de diseño de filtros FIR correspon-
de al truncamiento de su respuesta al impulso. De tal forma que, partiendo de un
filtro FIR ideal se selecciona un número finito de impulsos (a ambos lados del eje n
) para convertirlo en un filtro estable.

4.3.	 TRUNCAMIENTO DE LA RESPUESTA AL IMPULSO
Este método consiste en limitar la cantidad de muestras de la respuesta al impulso
del filtro. Se parte de un h[n] que tiene infinitos impulsos con amplitud distinta a
cero, y se llega a un h[n] que tiene un número de impulsos finitos, simétrico res-
pecto al origen.

Cuando se aplica truncamiento a h[n], se hace visible el fenómeno de Gibbs en la
respuesta en frecuencia del filtro, que consiste en la aparición de pequeñas on-
dulaciones tanto en la banda de paso como en la banda de rechazo del filtro. La
diferencia (error) entre la máxima amplitud del rizado en relación con la amplitud
plana del filtro ideal es del 9%, aproximadamente. Este error aparecerá en H(ejω),
independiente de la cantidad de muestras seleccionadas al truncar h[n].

Por ejemplo, supongamos que la señal sinc en el dominio del tiempo discreto de
duración infinita la truncamos en el rango -5 ≤ n ≤ 5, cuyo espectro se presenta en
la Figura 32.

πn

55PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 32. Espectro por truncamiento de h[n] con -5≤n≤5.

Si la misma señal sinc la truncamos, pero ahora en el rango -20 ≤ n ≤ 20, obtendre-
mos el espectro de la Figura 33.

Figura 33. Espectro por truncamiento de h[n] con -20≤n≤20.

Como se aprecia en las figuras anteriores, cuando se realiza truncamiento de h[n] se
tiene un efecto de “rizado”, tanto en la banda de paso, como en la banda de rechazo.
Este rizado se va “compactando” a medida que la cantidad de muestras selecciona-
das de h[n] aumenta, pero no desaparece.

4.4.	 MUESTREO EN FRECUENCIA
Este método de diseño de filtros FIR consiste en muestrear la respuesta en frecuen-
cia de un filtro análogo ideal, y aplicar un conjunto de ecuaciones que nos permiten
obtener la respuesta al impulso del filtro digital. Existen dos grupos de ecuaciones

56 Dora Maria Ballesteros, Diego Renza

dependiendo de si el filtro tiene una muestra en ω = 0 (es decir, α = 0) o no (es
decir, α = 1)⁄2). En el primer caso, se diseñan filtros con M impar, mientras que, en
el segundo caso M es par.

Utilizaremos los siguientes ejemplos para ilustrar en qué consiste este método de
diseño de filtros FIR. Primero, para el caso de α = 0; y posteriormente, para α = 1)⁄2.

Ejemplo 1:

Partimos de un filtro pasa-bajo ideal con fc = 250 [Hz]. La señal de entrada la mues-
treamos con fc = 2000 [Hz] y el filtro análogo lo muestreamos con M = 21 (una de
sus muestras queda ubicada en la frecuencia f = 0 [Hz]). Para el diseño de este filtro,
utilizaremos las ecuaciones correspondientes a α = 0.

El valor de espaciamiento en frecuencia, ∆f, entre muestras consecutivas del filtro
análogo, se calcula con la siguiente ecuación:

Que para este caso es ∆f=1000⁄10=100, es decir que, cada 100 Hz se toma una
muestra del espectro. Las muestras de amplitud distinta a cero se ubican en los si-
guientes valores de frecuencia {-200,-100,0,100,200} [Hz]. Aunque la frecuencia
de corte deseada está en 250 [Hz], con los valores de M y fs seleccionados real-
mente se está diseñando un filtro con frecuencia de corte de 200 [Hz]. El filtro
muestreado se presenta en la siguiente figura.

Figura 34. Muestreo en frecuencia del filtro análogo, M=21.

A partir de esta gráfica, se escribe Hr, que corresponde con el filtro muestreado:

Se debe tener en cuenta que solamente se definen los valores de k del eje de fre-
cuencias positivo (incluido el cero), dado que los otros valores son su espejo.

A partir de Hr se obtiene G(k), utilizando la siguiente ecuación:

57PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

		 G(k) = (-1)k Hr (k)	 Ecuación 27

Realizando una alternancia en los signos de Hr así: signo positivo para los valores de
k pares; signo negativo para los valores de k impar.

Entonces, para este filtro se tiene que:

Finalmente, se calcula h[n] con la ecuación (para α = 0.):

La cantidad máxima de términos cosenoidales de la ecuación anterior es U = (M-
1)/2. Sin embargo, teniendo en cuenta que a partir de k =3 se tiene que Hr (k) = 0,
entonces solo existen los términos para k = 1 y k = 2, es decir, dos términos cose-
noidales, quedando h[n] expresada así:

y al reemplazar los valores de G(k), finalmente se obtiene la siguiente ecuación de
h[n]:

Entonces, h[n] se obtiene en el rango [0 20], dado que M = 21.

Podemos utilizar el siguiente código en Python para obtener las 21 amplitudes de
los impulsos de h[n]:
import math
import numpy as np
M=21
G0=1
G1=-1
G2=1
h= np.zeros(M)
pi = math.pi
cos = math.cos

for n in range(M):
	 h[n]=1/M*(G0+2*((G1*cos(2*pi/M*(n+0.5)))+(G2*cos(4*pi/M*(n+0.5)))))
print(h)

Obteniendo el siguiente resultado:

[0.04445162 0.02119247 -0.01507826 -0.04761905 -0.05937998 -0.03943817
 0.01259897 0.08580656 0.16110284 0.21731539 0.23809524 0.21731539
 0.16110284 0.08580656 0.01259897 -0.03943817 -0.05937998 -0.04761905
 -0.01507826 0.02119247 0.04445162]

58 Dora Maria Ballesteros, Diego Renza

Se puede apreciar que el primer término de h[n] (es decir h[0]) es igual al último
término (es decir h(M-1)); el segundo término es igual al penúltimo, y así sucesi-
vamente. De forma general, siempre que se diseñe un filtro con este método, se
cumplirá que:

h(0) = h(M-1)

h(1) = h(M-2)

h(2) = h(M-3)

…

Como en este ejemplo M es impar, entonces el término h((M - 1)/2) no tiene pareja.

Ahora, vamos a graficar la respuesta en frecuencia del filtro que hemos diseñado.
Utilizaremos el siguiente código en Python:

from scipy import signal
import matplotlib
import matplotlib.pyplot as plt
a=1 # se hace igual a 1 porque el filtro es FIR
w1, v1 = signal.freqz(h, a)
plt.rcParams[“figure.figsize”] = (14,8)
plt.plot(w1, np.abs(v1))

Figura 35. Magnitud de la respuesta en frecuencia método muestreo en frecuencia, M=21.

El siguiente paso consiste en encontrar a partir de la gráfica y de forma teórica la
frecuencia de corte del filtro digital. Recordemos que el valor máximo es π [rad/
muestra].

Para este método de diseño, la frecuencia de corte se encuentra en la amplitud en
la cual se tiene una ganancia de -3 dB en escala logarítmica (o de 0.707 en escala
lineal) del valor en estado estable (típicamente es 1). Entonces, de forma visual en-
contramos que la frecuencia de corte es de aproximadamente 0.7 [rad ⁄ muestra].
Podemos utilizar el siguiente código en Python para determinar su valor exacto, así:

59PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

x = np.where(abs(v1) > 0.707)
wcd = np.max(x)*pi/len(w1)
print(wcd)

0.6994952392758523

Finalmente, este valor se normaliza en el rango [0 1], de la siguiente manera:

fcn = wcd / pi # frecuencia de corte normalizada en el rango (0 1)
print(fcn)

0.22265625

Por otro lado, la frecuencia de corte normalizada teórica se calcula como:

Donde k es el máximo valor para el cual Hr es distinto de cero (o el valor mínimo
para el cual Hr es distinto de cero, si el filtro es pasa-altos).

En nuestro ejemplo k=2. De tal forma que,

El valor experimental es muy cercano el valor teórico, es decir, el filtro diseñado
obtenido se aproxima en gran medida al filtro que queríamos diseñar.

Ejemplo 2:

Partimos de un filtro pasa-bajo ideal con fc = 450 [Hz], fs = 1800 [Hz], y cantidad
de muestras M = 18. Sin embargo, como M es par, se tiene que α = 1⁄2, lo que sig-
nifica que no existe muestra en f = 0 [Hz], sino en f = ∆f ⁄ 2 [Hz].

El valor de espaciamiento en frecuencia, ∆f, entre muestras consecutivas del filtro
análogo, se calcula con la siguiente ecuación:

Obteniendo ∆f=900 ⁄ 9 = 100 [Hz], cuyas muestras de valor distinto a cero se
ubican en {-450,-350,-250,-150,-50,50,150,250,350,450} [Hz]. El filtro mues-
treado se presenta en la siguiente figura.

Figura 36. Muestreo en frecuencia del filtro análogo, M=18.

60 Dora Maria Ballesteros, Diego Renza

Como siguiente paso, escribiremos el valor de Hr, así:

Y obtenemos G(k) utilizando la ecuación 27,

Y calculamos h[n], a partir de G(k). Se enfatiza que la ecuación cuando M es par
se expresa en términos de senoidales, y no de cosenoidales como en el ejemplo
anterior.

La ecuación general es:

La cantidad máxima de términos senoidales de la ecuación anterior es U = M - 1 , sin
embargo, teniendo en cuenta que a partir de k=5 se tiene que hr(k) = 0, solamente
se tendrán en este ejemplo cinco términos correspondientes a k = 0,1,2,3 y 4.

Entonces, la respuesta al impulso del filtro se define, así:

Y se pueden obtener sus valores con el siguiente código en Python:

import math
import numpy as np

M=18
G0=1
G1=-1
G2=1
G3=-1
G4=1

h= np.zeros(M)
pi = math.pi
sin = math.sin

for n in range(M):
	 h[n]=2/M*((G0*sin(2*pi/M*(0.5)*(n+0.5)))+(G1*sin(2*pi/M*(1+0.5)*(n+0.5)))+
		 (G2*sin(2*pi/M*(2+0.5)*(n+0.5)))+(G3*sin(2*pi/M*(3+0.5)*(n+0.5)))
+
 (G4*sin(2*pi/M*(4+0.5)*(n+0.5))));

print(h)

Obteniendo como resultado,

2

61PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

[0.04272059 0.02875767 -0.057602 -0.01177696 0.07856742 -0.01681924
 -0.1235279 0.10732509 0.48829857 0.48829857 0.10732509 -0.1235279
 -0.01681924 0.07856742 -0.01177696 -0.057602 0.02875767 0.04272059]

De forma similar a lo obtenido en el ejemplo 1, el primer valor de h[n] es igual al
último valor, el segundo valor es igual al penúltimo valor, y así sucesivamente. A dife-
rencia del caso anterior, no existe un valor que quede sin pareja, dado que M es par.

Continuaremos, dibujando la respuesta en frecuencia del filtro, con el siguiente có-
digo en Python:

from scipy import signal
import matplotlib
import matplotlib.pyplot as plt
a=1
w1, v1 = signal.freqz(h, a)
plt.rcParams[“figure.figsize”] = (14,8)
plt.plot(w1, np.abs(v1))

Obteniendo,

Figura 37. Magnitud de la respuesta en frecuencia método muestreo en frecuencia, M=18.

A partir de la figura anterior, se puede determinar que la frecuencia de corte del
filtro digital se encuentra alrededor de 1.7 [rad ⁄ muestra] (evaluando la frecuencia
cuya amplitud es 0.707).

Nos podemos apoyar en Python para encontrar su valor, con el siguiente código:

x = np.where(abs(v1) > 0.707)
wcd = np.max(x)*pi/len(w1)
print(wcd)

1.6689710972195777

Ahora, calculamos la frecuencia de corte normalizada del filtro digital, así:

fcn = wcd / pi # frecuencia de corte normalizada en el rango (0 1)
print(fcn)

0.53125

62 Dora Maria Ballesteros, Diego Renza

 Y el valor teórico, por medio de la ecuación:

	 fcN
 = 2 (2k + 1)	

	 Ecuación 32

Obteniendo en este caso,

fcN
= 2

 *
 9 = 0.11 * 4.5 = 0.5

Como conclusión, hemos verificado que el filtro quedó diseñado correctamente.

4.5. 	 VENTANEO

Podemos decir que este método se inspiró en el concepto de truncamiento de la
respuesta al impulso. Lo que se busca, es limitar la cantidad de impulsos de la señal
sinc, para que el filtro sea realizable (es decir, que no requiera de una señal en tiem-
po discreto de duración infinita por ambos lados del eje n), y, adicionalmente, sea
estable. Sin embargo, en este caso no se descartan los coeficientes que estén por
fuera del rango de la señal sinc seleccionado, sino que, se multiplica en el dominio
del tiempo discreto la señal sinc por una ventana de duración finita. El efecto en el
dominio de la frecuencia es el de la convolución entre el espectro de la señal sinc
(que corresponde al filtro ideal) y el espectro de la ventana.

Matemáticamente, el concepto anterior lo expresamos así:

Sea h[n] la respuesta al impulso del filtro ideal, y w[n] la ventana discreta de dura-
ción finita. Cada una de estas señales tiene su correspondiente espectro, así:

	 h[n]→ H(ω)	 Ecuación 33

	 w[n]→ W(ω)	 Ecuación 34

Donde DTFT corresponde a la Transformada de Fourier de Tiempo Discreto (Dis-
crete-Time Fourier Transform).

Entonces, se multiplica en el dominio del tiempo discreto la señal h[n] de duración
infinita con la señal w[n] de duración finita, obteniendo una respuesta al impulso de
duración finita, la cual denominaremos ĥ(n).

El espectro de h[n] lo denominaremos h(ω), el cual se obtiene de convolucionar
los espectros de las señales h[n] y w[n], es decir,

M 2

18 2

DTFT

DTFT

̂ ̂

63PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Donde ⊛ es el operador de convolución.

A continuación, se presenta de forma gráfica el proceso de ventaneo, en el dominio
del tiempo y de la frecuencia.

Figura 38. Diseño de filtros FIR utilizando el método de ventaneo.

Algo importante a resaltar, es que existen varios tipos de ventanas. Algunas son más
suaves, otras tienen cambios bruscos de amplitud, unas son más puntiagudas, otras
más anchas. Cada tipo de ventana tiene su correspondiente espectro, por lo que, el
filtro resultante tendrá características diferentes. Por ejemplo, existen ventanas que
atenúan de forma significativa en frecuencias distantes a la frecuencia de corte, pero
que no atenúan muy bien en frecuencias cercanas a la frecuencia de corte. Otras
ventanas tienen un comportamiento casi homogéneo en la zona de rechazo, pero
con niveles de atenuación menores que las primeras.

En Python, la librería scipy tiene 23 tipos de ventanas2 . Para diseñarlas, se puede
utilizar la instrucción signal.get_window, o directamente con el nombre de la ventana.

A continuación, se presenta el código en Python para crear varios tipos de ventanas.

a)	 Ventana Boxcar (rectangular)

import matplotlib.pyplot as plt
from scipy import signal
M=50 # orden del filtro = M-1.
window1 = signal.boxcar(M)
from pylab import rcParams
rcParams[‘figure.figsize’] = 10, 6
plt.stem(window1)

2 https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

64 Dora Maria Ballesteros, Diego Renza

b.)	 Ventana Hamming

window2 = signal.hamming(M)
from pylab import rcParams
rcParams[‘figure.figsize’] = 10, 6
plt.stem(window2)

c)	 Ventana Blackman

window3 = signal.blackman(M)
from pylab import rcParams
rcParams[‘figure.figsize’] = 10, 6
plt.stem(window3)

d)	 Ventana Hanning

window4 = signal.hann(M)
from pylab import rcParams
rcParams[‘figure.figsize’] = 10, 6
plt.stem(window4)

e)	 Ventana Triangular

window5 = signal.triang(M)
from pylab import rcParams
rcParams[‘figure.figsize’] = 10, 6
plt.stem(window5)

d)	 Ventana Tukey

window6 = signal.windows.tukey(M)
from pylab import rcParams
rcParams[‘figure.figsize’] = 10, 6
plt.stem(window6)

En la Figura 39 se presentan las seis ventanas diseñadas, todas con el mismo orden
del filtro, M=50.

La primera ventana, correspondiente a boxcar, es una ventana cuyas muestras son
constantes e iguales a uno, de tal forma que, es equivalente a truncar la señal sinc
cuando se multiplica por esta ventana en el dominio del tiempo discreto. La quinta
ventana, triang, debe su nombre precisamente a la figura geométrica que generan sus
amplitudes. La ventana tukey se caracteriza porque tiene una zona creciente seguida
de una zona constante y posteriormente una zona decreciente. Las otras tres venta-
nas que se seleccionaron en este ejemplo son muy similares entre sí, con un cambio
de amplitud suave (sin saltos abruptos). Tanto la ventana blackmann como la hanning
tienen su primera y última muestra de amplitud igual a cero, a diferencia de la ven-
tana hamming que inicia y termina con una amplitud mayor a cero. Adicionalmente,
de estas tres ventanas la más “angosta” es la ventana blackman.

65PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 39. Ejemplos de ventanas, M=50: a) boxcar, b) hamming, c) blackman, d) hanning, e)
triangular, f) tukey.

Ahora, compararemos la respuesta en frecuencia de las seis ventanas. Para ello, uti-
lizaremos el siguiente código en Python:

from scipy.fft import fft, fftshift
import numpy as np
plt.figure()
window = window1 # se reemplaza para cada una de las ventanas dise-
ñadas previamente
A1 = fft(window, 2048) / (len(window)/2.0)
freq1 = np.linspace(-0.5, 0.5, len(A1))
freq1 = freq1 * 2
response1 = np.abs(fftshift(A1 / abs(A1).max()))
response1 = 20 * np.log10(np.maximum(response1, 1e-10))
from pylab import rcParams
rcParams[‘figure.figsize’] = 10, 6
N = len(freq1)//2
plt.plot(freq1[N+1:2*N], response1[N+1:2*N])

Obteniendo los siguientes espectros:

66 Dora Maria Ballesteros, Diego Renza

Figura 40. Respuesta en frecuencia para M=50 de las ventanas: a) boxcar, b) hamming, c)
blackman, d) hanning, e) triangular, f) tukey.

Como era de esperarse, los espectros obtenidos de las seis ventanas diseñadas
difieren entre sí. Empezaremos comentando el espectro de boxcar, el cual presenta
la menor atenuación en la banda de rechazo, oscilando su ganancia entre -30 dB a
-60dB, mientras que otras ventanas como la blackman llegan a tener hasta -160 dB
de ganancia. En el caso de la ventana hamming la ganancia oscila entre -50dB y -90dB.

Como paso final, diseñaremos el filtro FIR con el método de ventaneo. Para ello, de-
bemos seleccionar la ventana por la cual multiplicaremos en el dominio del tiempo
la señal sinc; mientras que, en el dominio de la frecuencia se realizará la convolución
de los dos espectros. En Python utilizamos la instrucción signal.firwin de la
librería scipy para el diseño del filtro FIR por el método de ventaneo.

Los filtros que diseñaremos a continuación son pasa-bajos. Utilizaremos fs = 8000 [Hz],
y entonces por Nyquist la máxima frecuencia de corte es fcmax = fs⁄2 = 4000[Hz]. Se-
leccionaremos como frecuencia de corte fc = 2000[Hz], obteniendo que fc = fcmax /2.

67PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Importe de librerías:

from scipy import signal
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import math

Parámetros de diseño (M, frecuencia y tipo de filtro):

M=50 # el filtro es de orden M-1
f=2000
pass_zero=True # True corresponde a un filtro pasabajo.

Diseño del filtro FIR con la ventana boxcar y visualización de la respuesta en fre-
cuencia:

h1= signal.firwin(M, f, window=’boxcar’, fs=8000, pass_zero=pass_
zero)
w1, v1 = signal.freqz(h1,1)

Diseño del filtro FIR con la ventana hamming y visualización de la respuesta en fre-
cuencia:

h2= signal.firwin(M, f, window=’hamming’, fs=8000, pass_zero=pass_
zero)

w2, v2 = signal.freqz(h2, 1)

Diseño del filtro FIR con la ventana blackman y visualización de la respuesta en
frecuencia:

h3= signal.firwin(M, f, window=’blackman’, fs=8000, pass_zero=pass_
zero)

w3, v3 = signal.freqz(h3, 1)

Diseño del filtro FIR con la ventana hanning y visualización de la respuesta en fre-
cuencia:

h4= signal.firwin(M, f, window=’hann’, fs=8000, pass_zero=pass_zero)

w4, v4 = signal.freqz(h4, 1)

Diseño del filtro FIR con la ventana triangular y visualización de la respuesta en
frecuencia:

h5= signal.firwin(M, f, window=’triang’, fs=8000, pass_zero=pass_
zero)

w5, v5 = signal.freqz(h5, 1)

68 Dora Maria Ballesteros, Diego Renza

Diseño del filtro FIR con la ventana tukey y visualización de la respuesta en frecuen-
cia:

h6= signal.firwin(M, f, 200, window=’tukey’, fs=8000)
w6, v6 = signal.freqz(h6, 1)

Primero dibujaremos la respuesta al impulso de los filtros, ĥ(n), (resultado de mul-
tiplicar en el dominio del tiempo la señal sinc por la ventana), y posteriormente, la
respuesta en frecuencia del filtro diseñado, Ĥ(ω), (resultado de convolucionar en
el dominio de la frecuencia la respuesta en frecuencia de la ventana con la del filtro
ideal).

Figura 41. Respuesta al impulso, ĥ(n), método de ventaneo, M=50: a) boxcar, b) hamming,
c) blackman, d) hanning, e) triangular, f) tukey.

Se utiliza el siguiente código para dibujar las seis respuestas al impulso de los filtros:

plt.stem(h) # h= h1, h2, … h6.

Al comparar las gráficas, se aprecia que las diferencias se ven más marcadas en los
primeros y últimos impulsos de ĥ(n), es decir, en las amplitudes más pequeñas de
la señal sinc.

Posteriormente, dibujaremos la respuesta en frecuencia de los seis filtros FIR, utili-
zando escala logarítmica:

69PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

plt.plot(w, 20*np.log10(np.abs(v))) # w= w1, w2, … w6. v= v1, v2, … v6.

Y obtenemos los siguientes espectros:

Figura 42. Respuesta en frecuencia de filtros FIR diseñados con ventanas (escala logarítmi-
ca), M=50: a) boxcar, b) hamming, c) blackman, d) hanning, e) triangular, f) tukey.

Como se observa, el comportamiento de la respuesta en frecuencia del filtro en la
banda de paso cambia de forma significativa entre las ventanas seleccionadas para su
diseño. Las mayores atenuaciones (ganancias alrededor de -100dB) se obtienen con
las ventanas hamming, blackman, y hanning.

Finalmente, visualizaremos la respuesta en frecuencia de los filtros, pero ahora en
escala lineal. El objetivo es poder determinar de forma gráfica la frecuencia de corte
del filtro digital obtenido.

Para ello, utilizaremos la siguiente instrucción para cada filtro:

plt.plot(w, (np.abs(v))) # w= w1, w2, … w6. v= v1, v2, … v6.

Y obtenemos las siguientes gráficas:

70 Dora Maria Ballesteros, Diego Renza

Figura 43. Respuesta en frecuencia de filtros FIR diseñados con ventanas (escala lineal),
M=50: a) boxcar, b) hamming, c) blackman, d) hanning, e) triangular, f) tukey.

Podemos observar que tanto en la banda de paso como en la de rechazo, el filtro
que presenta mayores ondulaciones es boxcar (debido al fenómeno de Gibbs que
vimos previamente). En segundo lugar, se encuentra el filtro diseñado con la ventana
tukey. Los filtros con “mejor” comportamiento, de los evaluados en esta sección,
son hamming, blackman y hanning. En el caso del filtro diseñado con la ventana triang,
su respuesta no es tan “plana” en las bandas de paso y de rechazo.

Como paso final, calcularemos la frecuencia de corte del filtro digital y la compara-
remos con la frecuencia de corte teórica. Como se mencionó en el Capítulo 2, se
debe encontrar entre [0 π] (en unidades rad/muestra). Como este ejemplo utilizó
fc = fcmax ⁄2, entonces la frecuencia de corte teórica del filtro digital es de π ⁄ 2.

Con el siguiente código en Python encontramos la frecuencia de corte experimen-
tal (ωcd) de los seis filtros FIR diseñados con las ventanas boxcar, hamming, blackman,
hanning, triangular, y tukey.

71PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

pi = math.pi
x = np.where(abs(v) > 0.707) # Para v= v1, v2, … v6.
wcd = np.max(x)*pi/len(w) # Para w= w1, w2, … w6.

print(wcd)

Y se obtienen los siguientes resultados:

Ventana boxcar hamming blackman hanning triangular tukey

ωcd 1.5401 1.5155 1.5033 1.5094 1.5155 1.5401

Los cuales son cercanos al valor teórico, correspondiente a 1.5707 [rad⁄muestra].

4.6. 	 CEROS EN FILTROS FIR
Partiendo de la función de transferencia del filtro digital, H(z), que estudiamos en el
Capítulo 2 de este libro, tenemos que un filtro FIR se expresa de la siguiente forma:

Donde M -1 es el orden del filtro. Entonces, la cantidad de términos de H(z) dife-
rentes de cero es M. Esta función de transferencia también se puede escribir como
una multiplicatoria (en lugar de una sumatoria) de M -1 términos, a partir de la
factorización del polinomio de z, así:

Por ejemplo, vamos a suponer que la función de transferencia del filtro FIR es
H(z) = 1 - 2z-1 + z-2, entonces factorizamos el polinomio de segundo orden obte-
niendo dos términos, así, H(z) = (1 - z-1)(1 - z-1). Cada uno de los términos repre-
senta las raíces del numerador de la función de transferencia, y se conocen como
los ceros del filtro digital. Es decir, cada término se iguala a cero y se despeja z
para obtener los ceros del filtro.

Para este ejercicio, se tienen dos ceros en la misma posición, ubicados en:

(1 - z-1) = 0 ∴ 1 = z-1 ∴ z = 1

Es decir, c1=1, c2 = 1.

Se resalta que en el caso de los filtros FIR, solamente se tienen raíces
en el numerador, es decir, los filtros FIR son sistemas solo-ceros.

En el capítulo 5 se generalizará este concepto a filtros IIR.

A medida que avancemos en el libro conoceremos el “significado” de los ceros de
un filtro digital. Por ahora, graficaremos su posición en el plano z, apoyándonos en
lenguaje de programación Python.

72 Dora Maria Ballesteros, Diego Renza

Partiremos con el filtro de promedio que estudiamos en el Capítulo 2 y seguiremos
con el método de ventaneo.

Gráfica polos y ceros filtro de promedio:

Lo primero que vamos a realizar es definir el vector de amplitudes del filtro
de promedio utilizando np.ones. Posteriormente, calculamos los ceros (z),
polos (p) y ganancia (k), de la función de transferencia del filtro, por medio
de signal.tf2zpk.Finalmente, dibujamos el círculo unitario en el plano z
con plt.plot(np.cos(theta),np.sin(theta)), y ubicamos los ce-
ros con plt.scatter(np.real(z1),np.imag(z1)). Se resalta que el
filtro de promedio no tiene polos, dado que es un filtro FIR. Este concepto se
explica con mayor detalle en el próximo capítulo.

El código completo en Python se presenta a continuación:

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from scipy import signal
import math

M = 2 # M = 2, 3, 4, 5.
b = np.ones(M)/(M)
z, p, k = signal.tf2zpk(b,1)
print(len(z))
theta = np.linspace(-math.pi,math.pi,201)
plt.rcParams[“figure.figsize”] = (7,7)
plt.plot(np.cos(theta),np.sin(theta))
plt.scatter(np.real(z),np.imag(z))
plt.show()

Y se obtienen las siguientes gráficas:

Figura 44. Gráfica de polos y ceros filtro de promedio, para: a) M=2, b) M=3, c) M=4, d) M=5.

73PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

De la figura anterior, se pueden enumerar las siguientes conclusiones:

•	 Todos los ceros de un filtro de promedio se ubican sobre el círculo
unitario.

•	 La cantidad de ceros es igual a M - 1. Es decir, se tienen tantos
ceros como el orden del filtro.

•	 Cuando el valor de M - 1. es par, cada cero tiene su conjugado, es
decir, comparten el mismo valor de la parte real y con signo con-
trario en la parte imaginaria.

•	 Cuando el valor de M - 1. es impar, se tiene un cero en z = -1.

•	 Los ceros se concentran en la parte izquierda de la gráfica, como
“alejándose” de z = -1

Gráfica polos y ceros filtro diseñado por el método de ventaneo:

Para este método de diseño, la gráfica de polos y ceros es distinta a la obtenida con
el filtro de promedio. Se sugiere utilizar M par en filtros pasa-bajos, y M impar en
filtros pasa-altos.

Para filtro pasa-bajos y ventana hamming, utilizamos el siguiente código en Python:

from scipy import signal
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import math
M=2 # hacer M = 2, 4, 6, 8
f1=2000
pass_zero=True # Si es True corresponde a un filtro pasa-bajo.
h1= signal.firwin(M, f1, window=’hamming’, fs=8000, pass_zero=pass_zero)
z1, p1, k1 = signal.tf2zpk(h1,1)
theta = np.linspace(-math.pi,math.pi,201)
plt.rcParams[“figure.figsize”] = (7,7)
plt.plot(np.cos(theta),np.sin(theta))
plt.scatter(np.real(z1),np.imag(z1))
plt.show()

74 Dora Maria Ballesteros, Diego Renza

Figura 45. Gráfica de polos y ceros, filtro pasa-bajos diseñado con la ventana hamming: a)
M=2, b) M=4, c) M=6, d) M=8.

En este caso, se obtienen ceros por fuera del círculo unitario, principalmente en va-
lores negativos de z, pero eventualmente también en valores positivos. No obstante,
se aprecia que uno de los ceros se encuentra en z = -1, dado que se diseñó un filtro
pasa-bajos.

A continuación, vamos a graficar los polos y ceros, pero ahora de un filtro pasa-altos.

M=4
f1=2000
pass_zero=False # Si es False a un filtro pasa alto
h1= signal.firwin(M, f1, window=’hamming’, fs=8000, pass_zero=pass_zero)
z1, p1, k1 = signal.tf2zpk(h1,1)
theta = np.linspace(-math.pi,math.pi,201)
plt.rcParams[“figure.figsize”] = (7,7)
plt.plot(np.cos(theta),np.sin(theta))
plt.scatter(np.real(z1),np.imag(z1))
plt.show()

75PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 46. Gráfica de polos y ceros, filtro pasa-altos diseñado con la ventana hamming: a)
M=3, b) M=7, c) M=11, d) M=15.

La principal diferencia en el comportamiento de la gráfica de polos y ceros entre
filtros pasa-bajos y pasa-altos, es que en los últimos los ceros se concentran alrede-
dor de z = 1 (ver Figura 46), mientras que en los primeros se concentran alrededor
de z = -1. Esta observación es válida independiente del método de diseño del filtro
y/o de la ventana seleccionada. 

77PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

CAPÍTULO 5.

Metodos de diseño de filtros IIR
En este quinto capítulo del libro abordaremos el diseño de filtros de respuesta al
impulso infinita (IIR), a partir del diseño de filtros análogos y aplicando mapeo entre
el dominio Laplaciano y el dominio Z.

Al finalizar el capítulo, deberás estar en capacidad de:

1.	 Encontrar la TZ de señales de duración finita e infinita, así como su región
de convergencia.

2.	 Diseñar filtros digitales aplicando Transformada Bilineal, con ayuda de Python.

3.	 Diseñar filtros Butterworth digitales, con ayuda de Python.

4.	 Encontrar la relación entre la frecuencia de corte del filtro análogo con la
frecuencia de corte del filtro digital (o frecuencia de resonancia, en el caso
de filtros pasa-banda de banda angosta).

5.	 Explicar el comportamiento de polos y ceros en filtros IIR.

6.	 Filtrar señales 1D con filtros IIR.

 

Una diferencia importante en el diseño de filtros digitales FIR con los IIR radica
en que los segundos se diseñan a partir de un mapeo entre el dominio Laplaciano
y el dominio Z. Teniendo en cuenta que la función de transferencia de los filtros
análogos contiene un polinomio en el denominador dependiente de s, entonces, los
filtros digitales obtenidos por el mapeo entre estos dos dominios contendrán en su
función de transferencia un polinomio en el denominador dependiente de z. Por lo
tanto, con esta técnica de diseño, siempre se obtendrán filtros IIR.

En este capítulo repasaremos algunos conceptos básicos de la TZ y posteriormente
abordaremos dos ecuaciones de mapeo entre los dominios Laplaciano y z, una co-
rrespondiente a la aproximación en derivadas, y la otra, a la Transformada Bilineal.
Aunque en la práctica la aproximación en derivadas es un método que no se utiliza
por las limitaciones que tiene, permite entender el concepto de mapeo entre ambos
dominios y facilita comprender en qué consiste la Transformada Bilineal. Por esa
razón, la incluiremos en este capítulo.

78 Dora Maria Ballesteros, Diego Renza

5.1.	 CONCEPTOS BÁSICOS DE LA TZ
En el Capítulo 2.1 se presentó una breve introducción a la Transformada Z. En este
Capítulo abordaremos el concepto de Región de Convergencia (ROC) de la TZ de
la señal discreta, así:

“La ROC es el conjunto de todos los valores de z para los cuales la TZ de
x[n] es finita, es decir, que X(z) converge a un valor”.

Si no se logra satisfacer la condición anterior con ningún valor de z, entonces se dice
que la TZ de la señal no existe.

A continuación, aplicaremos el concepto de ROC a varios casos. Inicialmente para
señales de duración finita y posteriormente para señales de duración infinita.

Caso 1: señal de duración finita causal.

Supongamos que x[n] = δ[n] + 2δ[n - 1] + δ[n - 2]. Entonces, la TZ de la señal
es X(z) = z0 + 2z-1 + z-2, ó de forma equivalente, X(z) = 1 + 2 + 1 .

Ahora bien, ¿existe algún valor o un conjunto de valores de z para los cuales
X(z) no sea finita? Específicamente, si z = 0 entonces X(z) = 1 + 2 + 1 . →∞,
es decir, X(z) no converge, y entonces ese valor queda por fuera de la ROC.

Por lo cual, la ROC de la señal se expresa así:

ROC = todo plano z- {z = 0}.

Para z ≠ 0 se tiene que X(z) es finita.

Caso 2: señal de duración finita anti-causal

Utilizaremos la señal x[n] = δ[n + 2] + 5δ[n + 1], cuya TZ es X(z) = z2+5z1.
Para este caso, cuando z = 0 se tiene que X(z) es finita, y entonces hace parte
de su ROC. Analicemos entonces si para otro valor de z se tendría que X(z)
no es finita. Específicamente, si z = ∞ se tiene que X(z) = ∞2 + 5∞5 →∞, por
lo cual se debe excluir este valor de la ROC, quedando expresada de la si-
guiente manera:

ROC = todo plano z - {z = ∞}.

Caso 3: señal de duración infinita causal

Partiremos de la señal

x[n] = αn u[n]

Para conocer su comportamiento, dibujaremos la señal para algunos valores

z z2

o o2

79PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

de n teniendo en cuenta que esta señal inicia en n = 0 y termina en n = ∞.
En la Figura 47 se presenta un ejemplo de la señal para algunos valores de n
y α = 1⁄2.

Figura 47. Gráfica de la señal (1/2)n u[n].

De forma general, si 0 < α < 1 la señal es decreciente, pero si α > 0 es ento-
nes creciente. Si α es negativa, tendrá un comportamiento oscilatorio (valores
positivos y negativos alternados).

El código en Python para dibujar n muestras de la señal es:

import numpy as np
import matplotlib.pyplot as plt
a=0.5
n=5
n= np.linspace(0, n-1, n)
x = a **n
plt.stem(n, x)

La TZ de esta señal es:

X(z) = α0z0 + α1z-1 +α2z-2 + α3z-3 + ⋯+ α∞z-∞

Teniendo en cuenta que la cantidad de términos de la expresión anterior es
infinita, nos apoyamos en la siguiente serie matemática:

1 + A + A2 + A3 +⋯+ A∞ = 1 ↔ |A| < 1

De tal forma que, al comparar las dos ecuaciones anteriores encontramos
una similitud entre ellas cuando A=α/z. La ROC quedaría entonces como |α/
z| < 1, o de forma equivalente |z| > |α|.

De tal forma que, podemos reescribir la TZ de la señal, así:

	

Para el caso específico de α = 0.5, se tiene que su TZ es:

1-A

80 Dora Maria Ballesteros, Diego Renza

Por lo cual, la ROC de esta señal causal de duración infinita es el exterior
de un círculo de radio α.

Caso 4: señal de duración infinita anti-causal

Partiremos de la señal

x[n] = -βnu[-n-1]

Esta señal existe desde n= -∞ hasta n = -1. Para los demás valores de n, su
amplitud es cero. La siguiente figura presenta su comportamiento para algu-
nos valores de n, y con β = 2.

Figura 48. Gráfica de la señal -(2)^n u[-n-1].

Se debe tener en cuenta que el signo negativo está por fuera de la potencia n,
de tal forma que toda la amplitud de la señal se invierte. Ahora bien, si β > 1,
entonces se tiene una señal que disminuye en amplitud a medida que se aleja
del origen en valores negativos de n.

El código en Python para dibujar n muestras de la señal es:

import numpy as np
import matplotlib.pyplot as plt
a=2
n=4
n= np.linspace(-n, -1, n)
x = -(a **n)
plt.stem(n, x)

La TZ de esta señal es:

X(z) = -{β-1z1 + β-2z2 + β-3z3 + ⋯+ β-∞z∞ }

De forma similar al caso anterior, nos apoyamos en la siguiente serie mate-
mática:

1 + A + A2 + A3 +⋯+ A∞ = 1 ↔ |A|<1

Pasando el valor de 1 al lado derecho de la ecuación, tenemos que:

		 A + A2 + A3 +⋯+ A∞ = 1 -1	 ↔	 |A|<1

1-A

1-A

81PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Y resolviendo,

		 A + A2 + A3 +⋯+ A∞ = A 	 ↔	 |A|<1

Finalmente, multiplicamos a ambos lados de la ecuación por -1, obteniendo
que:

		 - {A + A2 + A3 +⋯+ A∞ } = A 	 ↔	 |A|<1

La TZ de la señal se parece a la serie anterior cuando A = z/β = β-1z. Y la ROC
quedaría como |β-1z| < 1, o de forma equivalente, |z| < |β|.

Entonces, podemos reescribir la TZ de la señal, así:

				 X(z) = β
-1z

O de forma equivalente,

		 1 ↔ ROC: |z|<|β|

Para el caso específico de β = 2, se tiene que su TZ es:

X(z) = 1 ↔ ROC: |z| < 2

Entonces, la ROC de esta señal anti-causal de duración infinita es el interior de
un círculo de radio β.

Caso 5: señal de duración infinita por ambos lados de n

Partiremos de la señal

x[n] = αn u[n] - βnu[-n-1]

Para x1[n] = αn u[n], y x2[n] = -βnu[-n - 1], es decir que, x[n] = x1[n] + x2 [n].

Teniendo en cuenta lo presentado en el Caso 3 y Caso 4 de este Capítulo, se tiene
que:

X(z) = 1 + 1

Con ROC: |z| > |α| ∩ |z| < |β|

De tal forma que, la TZ ∃ ↔β > α. En caso contrario, ∄.

5.2.	 APROXIMACIÓN EN DERIVADAS
El concepto que vamos a aplicar en esta subsección y la siguiente es el de mapeo.
Pero ¿qué significa exactamente mapear dos dominios? Según Britannica3, la defini-

3 Disponible en: https://www.britannica.com/science/mapping	

1-A

A - 1

β-1z-1

1-βz-1

1-2z-1

1-αz-1 1-βz-1

82 Dora Maria Ballesteros, Diego Renza

ción de mapeo es “cualquier forma prescrita de asignar a cada objeto en un conjunto a
un objeto en particular en otro (o el mismo) conjunto”. Entonces, para nuestro caso, el
mapeo permite relacionar el dominio Laplaciano con el dominio z a través de una
función.

En el caso del método de aproximación en derivadas, se mapea la función de trans-
ferencia H(s) con la función de transferencia H(z), correspondiente a la derivada. En
el dominio Laplaciano la función de transferencia de la derivada es H(s) = s, mien-
tras que en el dominio z es H(z) = (1 - z-1)⁄Ts , donde Ts corresponde al periodo
de muestreo del sistema (es decir, el espaciamiento entre muestras consecutivas,
sabiendo que Ts = 1 ⁄ fs).

La Figura 49 nos permite ilustrar el concepto de derivada. Supongamos que quere-
mos calcular la derivada de una señal discreta en un tiempo específico n, denomina-
da m(n), la cual se define como el incremento en amplitud de la señal dividido en el
periodo de muestreo, Ts , de la forma:

		 m(n) = x(n) - x(n - 1)		 Ecuación 39

Por ejemplo, para n = 7, tendremos que su derivada es m(7) = {x(7) - x(6)}⁄Ts .

Entonces, si la salida del sistema es la derivada de la señal de entrada, para todo valor
de n tendremos la siguiente ecuación de entrada-salida:

	 y[n] = x[n] - x[n - 1] 	 Ecuación 40

Figura 49. Señal discreta: concepto de derivada.

Aplicando la TZ a cada uno de los términos de la ecuación anterior y la propiedad
de desplazamiento de la TZ, tendremos que:

 		 Y(z) = X(z) - z-1 X(z) = X(z){1 - z-1} 		 Ecuación 41

De tal forma que la función de transferencia nos queda así:
		 Y(z) = H(z) = {1-z-1} 			 Ecuación 42

Ts

Ts

Ts Ts

Ts X(z)

83PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Relacionando las dos funciones de transferencia H(s) con la de H(z), obtenemos el
mapeo entre el dominio s y el dominio z:

	

Despejando z de la ecuación anterior, obtenemos:

	

Finalmente, al reemplazar s = jΩ, obtendremos:

Entonces,

				

Donde Ω corresponde a la frecuencia de corte del filtro análogo. Al variar Ω en el
rango {-∞, ∞} se obtiene una correspondencia en el plano z de un círculo de r =
0.5 y centro en z = 0.5. De tal forma que un filtro análogo estable (el cual tiene sus
polos en el semiplano izquierdo), se transforma en un filtro digital estable (el cual
tiene sus polos dentro del círculo unitario). La principal desventaja de este método
de diseño de filtros IIR consiste en que la ubicación de los polos en ese pequeño
círculo corresponde a frecuencias bajas. De tal forma que solamente se pueden
diseñar filtros con valores de ΩTs pequeños.

5.3.	 TRANSFORMADA BILINEAL
La Transformada Bilineal es una mejora del método de aproximación en derivadas,
dado que se mapea todo el semi-plano izquierdo del dominio Laplaciano, aprove-
chando todo el interior del círculo unitario. Como consecuencia, se pueden diseñar
filtros de cualquier frecuencia de corte, superando la limitación que tenía el método
de aproximación en derivadas.

La ecuación que nos permite mapear ambos dominios es:

Con esta función de mapeo, todo el semiplano izquierdo en el dominio s se corres-
ponde con el interior del círculo unitario en el dominio z.

En el dominio Laplaciano, un filtro pasa bajo tiene un cero en s = ∞. Cuando se
aplica la ecuación 46, el cero del filtro digital queda ubicado en en z = -1.

Adicionalmente, la correspondencia entre la frecuencia de corte del filtro análogo

84 Dora Maria Ballesteros, Diego Renza

(Ωa) con la del filtro digital (ωd) no es lineal, sino una relación de tipo tangencial,
dado por la ecuación:

A partir de la ecuación anterior, podemos encontrar la frecuencia de corte (o de
resonancia) del filtro digital a partir de la del filtro análogo, así:

Como siguiente paso, necesitamos recordar las funciones de transferencia de filtros
análogos. Trabajaremos con filtros de segundo orden.

Se aclara que las frecuencias de los filtros análogos de las funciones de transferencia
de la tabla anterior están en unidades de [rad ⁄ seg].

Con el siguiente ejemplo se ilustra el método de diseño de filtro IIR con la Transfor-
mada Bilineal, apoyado en Python.

Ejemplo 1: filtro pasa-altos

Se quiere diseñar un filtro digital utilizando Transformada Bilineal, a partir de un
filtro análogo pasa-alto, con Ωc = 100[Hz], ς = 1, y G = 1. La frecuencia de muestreo,
fs, es 10 veces la frecuencia de corte del filtro análogo.

El primer paso consiste en convertir la frecuencia de corte que inicialmente está en
[Hz] en unidades [rad ⁄ seg]. Posteriormente, escribir la función de transferencia en
el dominio análogo, teniendo en cuenta el tipo de filtro, así:

		 H(s) = 1*s2

A partir de H(s) se escribe el siguiente código en Python:

i

 s2 + (2 * 1 * 100 * 2 * π)s + (100 * 2 * π)2

85PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

mport numpy as np
from scipy import signal
import matplotlib.pyplot as plt
f = 100
frad = 2*3.14*f
amort = 1
G = 1
nums=np.array([G, 0, 0])
dens=np.array([1, 2*amort*frad, frad*frad])
fs=10 *f
ws, hs = signal.freqs(nums, dens)

Del código anterior, f es la frecuencia de corte del filtro análogo en unidades [Hz], frad
es la frecuencia de corte del filtro análogo en unidades [rad ⁄ seg], amort es el factor
de amortiguamiento, y G es la ganancia del filtro. Adicionalmente, nums es el vector del
polinomio del numerador de H(s), dens es el vector del polinomio del denominador
de H(s), y fs es la frecuencia de muestreo del sistema. Teniendo en cuenta que ambos
polinomios (numerador y denominador) son de segundo orden, entonces cada vector
contiene tres valores, el primero asociado a s2, el segundo a s1 y el tercero a s0.

Con la instrucción signal.freqs se calcula la respuesta en frecuencia del filtro análo-
go. La salida ws corresponde al vector de frecuencias; mientras que, hs es el vector
de amplitudes de H(s).

Para graficar la respuesta en frecuencia, escribimos el siguiente código:

plt.plot(ws, (np.abs(hs)), label=r’$|H(s)|$’)
plt.legend()
plt.xlabel(‘Frecuencia [rad/seg]’)
plt.ylabel(‘Magnitud’)
plt.title(‘Respuesta en frecuencia del filtro análogo’)
plt.grid()

Obteniendo la siguiente gráfica:

Figura 50. Respuesta en frecuencia filtro análogo pasa-alto, Ωc=200π [rad⁄seg].

Como siguiente paso, convertimos H(s) en H(z), aplicando Transformada Bilineal.
Para ello, utilizamos la instrucción *signal.bilinear y posteriormente creamos el sis-
tema LTI con la instrucción signal.dlti. A continuación, con signal.freqz calculamos

86 Dora Maria Ballesteros, Diego Renza

la respuesta en frecuencia del filtro digital (a partir de los vectores del numerador y
denominador de H(z)), y la graficamos.

filtz = signal.dlti(*signal.bilinear(nums, dens, fs))
wz, hz = signal.freqz(filtz.num, filtz.den)
plt.plot(wz, (np.abs(hz)), label=r’$|H(z)|$’)
plt.legend()
plt.xlabel(‘Frecuencia normalizada [rad/muestra]’)
plt.ylabel(‘Magnitud’)
plt.title(‘Respuesta en frecuencia del filtro digital’)
plt.grid()

Figura 51. Respuesta en frecuencia filtro digital pasa-alto, ωd = 0.6 [rad ⁄ muestra] ς = 1.

Teniendo en cuenta que ς = 1, entonces la frecuencia de corte corresponde a la
ganancia de 0.5. Al revisar la Figura anterior, este valor se encuentra en 0.6 [rad ⁄
muestra], aproximadamente.

A nivel teórico, calculamos la frecuencia de corte con el siguiente código:

wd =2*np.arctan(frad/(fs*2))

wd

Obteniendo
0.608501664475969

Coincidiendo el valor teórico con el encontrado a partir de la gráfica del filtro
digital.

Por otro lado, podemos escribir la función de transferencia del filtro digital, a partir
de los vectores filtz.num y filtz.den.

Sabiendo que,

filtz.num

array([0.57917428, -1.15834857, 0.57917428])

filtz.den

87PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

array([1. , -1.04414003, 0.2725571])

Entonces, escribimos H(z), partiendo de z0 en el primer término del polinomio,
tanto del numerador como del denominador, obteniendo que:

	 H(Z) = 0.57917428 - 1.15834857z-1 + 0.57917428z-2
		

Como siguiente paso, se calculan los ceros, polos y ganancia del filtro digital, utilizan-
do signal.tf2zpk, así:

z, p, k = signal.tf2zpk(filtz.num,filtz.den)
print(z)
print(p)
print(k)

Obteniendo:

[1. 1.]
[0.52207002 0.52207002]
0.5791742828084856

Finalmente, se grafican los polos y ceros del filtro digital:

theta = np.linspace(-np.pi,np.pi,201)
plt.rcParams[“figure.figsize”] = (5,5)

plt.plot(np.cos(theta),np.sin(theta))
plt.scatter(np.real(z),np.imag(z), marker=’o’)
plt.scatter(np.real(p),np.imag(p), marker=’x’)
plt.title(‘Gráfica polos y ceros filtro digital’)

Figura 52. Gráfica de polos y ceros del filtro digital pasa-alto, ωd=0.6 [rad ⁄ muestra].

A partir de la gráfica anterior, se pueden extraer las siguientes conclusiones:

	

1 - 1.04414003z-1

+0.2725571z-2

88 Dora Maria Ballesteros, Diego Renza

1.	Si el filtro es pasa-alto, los dos ceros se ubican en z=1.

2.	Los polos están relacionados con la frecuencia de corte del filtro digital.
En este caso se ubican en el semicírculo derecho del plano z, dado que (ωd
< π)⁄2.

Ejemplo 2: filtro pasa-bajos

Se quiere diseñar un filtro digital utilizando Transformada Bilineal, a partir de un
filtro análogo pasa-bajo, con Ωc = 100 [Hz], ς=0.707, y G=1. La frecuencia de mues-
treo es 4 veces la frecuencia de corte del filtro análogo.

El primer paso consiste en convertir la frecuencia de corte que inicialmente está en
[Hz], en unidades [rad ⁄ seg]. Posteriormente, escribir la función de transferencia en
el dominio análogo, teniendo en cuenta el tipo de filtro, así:

		 H(s) = 1 * (100 * 2 * π)2
	

A partir de H(s) se escribe el siguiente código en Python:

import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
f = 100
frad = 2*3.14*f
amort = 0.707
G = 1
nums=np.array([0, 0, G*frad*frad])
dens=np.array([1, 2*amort*frad, frad*frad])
ws, hs = signal.freqs(nums, dens)
plt.plot(ws, (np.abs(hs)), label=r’$|H(s)|$’)
plt.legend()
plt.xlabel(‘Frecuencia [rad/seg]’)
plt.ylabel(‘Magnitud’)
plt.title(‘Respuesta en frecuencia del filtro análogo’)

plt.grid()

Figura 53. Respuesta en frecuencia filtro análogo pasa-bajo, Ωc = 200π [[rad ⁄ seg].].

	

s2 + (2 * 0.707 * 100 * 2 * π)s + (100 * 2 *π)2

89PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Posteriormente, se utiliza la Transformada Bilineal para encontrar la función de
transferencia del filtro digital, con el siguiente código:

fs=4 *f
filtz = signal.dlti(*signal.bilinear(nums, dens, fs))
wz, hz = signal.freqz(filtz.num, filtz.den)
plt.plot(wz, (np.abs(hz)), label=r’$|H(z)|$’)
plt.legend()
plt.xlabel(‘Frecuencia normalizada [rad/muestra] ‘)
plt.ylabel(‘Magnitud’)
plt.title(‘Respuesta en frecuencia del filtro digital’)
plt.grid()

Obteniendo,

Figura 54. Respuesta en frecuencia filtro digital pasa-bajo, ωd = 0.133 [rad⁄muestra], ς = 0.707.

La ganancia en la frecuencia de corte es 0.707, dado que ς = 0.707. Entonces la fre-
cuencia de corte del filtro digital a partir de la gráfica es:

x = np.where(abs(hz) > 0.707)
wcd = np.max(x)*3.14/len(wz)
print(wcd)

1.3246875

A nivel teórico, la frecuencia de corte la encontramos con la siguiente ecuación:

wd =2*np.arctan(frad/(fs*2))
wd

1.3310548874510058

Los dos valores anteriores son muy cercanos, entonces el filtro quedó bien diseña-
do.

Como siguiente paso, encontramos las constantes de los polinomios del numerador
y denominador de H(z), así:

filtz.num

array([0.22603683, 0.45207366, 0.22603683])

90 Dora Maria Ballesteros, Diego Renza

filtz.den

array([1. , -0.28154419, 0.18569152])

Y escribimos la función de transferencia del filtro digital:

H(z) = 0.22603683 + 0.45207366z-1 + 0.22603683z-2

Los ceros, polos y ganancia de H(z), la encontramos con el siguiente código:

z, p, k = signal.tf2zpk(filtz.num,filtz.den)
print(z)
print(p)
print(k)

Obteniendo:

[-1. -1.]
[0.1407721+0.40727722j 0.1407721-0.40727722j]
0.22603683128439978

Es decir, el filtro tiene dos ceros en z = -1, y dos polos muy cercanos al eje vertical
del plano z.

La gráfica de polos y ceros del filtro se obtiene con el siguiente código:

theta = np.linspace(-np.pi,np.pi,201)
plt.rcParams[“figure.figsize”] = (5,5)
plt.plot(np.cos(theta),np.sin(theta))
plt.scatter(np.real(z),np.imag(z), marker=’o’)
plt.scatter(np.real(p),np.imag(p), marker=’x’)
plt.title(‘Gráfica polos y ceros filtro digital’)

Figura 55. Gráfica de polos y ceros del filtro digital pasa-bajo, ωd=1.33 [rad⁄muestra].

A partir de la gráfica anterior, se pueden extraer las siguientes conclusiones:

	

1 - 0.28154419z-1 + 0.18569152z-2

91PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

1.	 Si el filtro es pasa-bajo, los dos ceros se ubican en z = -1.

2.	 Los dos polos se ubican en el semicírculo derecho del plano z (muy cerca del
eje vertical), dado que la frecuencia de corte, ωd, es ligeramen te menor a π⁄2.

Ejemplo 3: filtro pasa-banda de banda angosta

Se quiere diseñar un filtro digital utilizando Transformada Bilineal, a partir de un
filtro análogo pasa-banda, con Ωr = 100 [Hz], Q = 2, y G = 1. La frecuencia de mues-
treo es 3 veces la frecuencia de corte del filtro análogo.

El primer paso consiste en convertir la frecuencia de corte que inicialmente está en
H(z) en unidades [rad⁄seg]. Posteriormente, escribir la función de transferencia en
el dominio análogo, teniendo en cuenta el tipo de filtro, así:

A partir de H(s) se escribe el siguiente código en Python:

import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
f = 100
frad = 2*3.14*f
Q = 2
G = 1
nums=np.array([0, G*frad/Q, 0])
dens=np.array([1, frad/Q, frad*frad])

ws, hs = signal.freqs(nums, dens)
plt.plot(ws, (np.abs(hs)), label=r’$|H(s)|$’)
plt.legend()
plt.xlabel(‘Frecuencia [rad/seg]’)
plt.ylabel(‘Magnitud’)
plt.title(‘Respuesta en frecuencia del filtro análogo’)
plt.grid()

Figura 56. Respuesta en frecuencia filtro análogo pasa-banda, Ωr = 200π [rad⁄seg].

92 Dora Maria Ballesteros, Diego Renza

Y se convierte el filtro análogo en digital con la Transformada Bilineal, así:

fs=3 *f
filtz = signal.dlti(*signal.bilinear(nums, dens, fs))
wz, hz = signal.freqz(filtz.num, filtz.den)
plt.plot(wz, (np.abs(hz)), label=r’$|H(z)|$’)
plt.legend()
plt.xlabel(‘Frecuencia normalizada [rad/muestra]’)
plt.ylabel(‘Magnitud’)
plt.title(‘Respuesta en frecuencia del filtro digital’)
plt.grid()

Figura 57. Respuesta en frecuencia filtro digital pasa-banda, ωd = 1.61 [rad⁄muestra], Q = 2.

La frecuencia de resonancia la encontramos a partir de la gráfica anterior, con el
siguiente código en Python:

x = np.where(abs(hz) > 0.999)	
wcd = np.max(x)*3.14/len(wz)
print(wcd)

1.6251953125

A nivel teórico, la frecuencia de resonancia del filtro digital es:

wd =2*np.arctan(frad/(fs*2))
wd

1.6163910321996993

Los valores anteriores son muy similares entre sí, entonces hemos verificado que el
filtro quedó bien diseñado.

Las constantes de los polinomios del numerador y denominador de la función de
transferencia del filtro digital son:

filtz.num

array([0.19983368, 0. , -0.19983368])

filtz.den

array([1. , 0.07294142, 0.60033263])

93PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

De tal forma que H(z) es:

H(z)=(0.19983368+〖-0.19983368z〗^(-2))/(1-0.07294142z^(-1)+
〖0.60033263z〗^(-2))

H(z) = 0.19983368 + 0.19983368z-2

Los ceros, polos y ganancia del filtro digital se calculan con el siguiente código en
Python:

z, p, k = signal.tf2zpk(filtz.num,filtz.den)
print(z)
print(p)
print(k)

[-1. 1.]
[-0.03647071+0.77395253j -0.03647071-0.77395253j]
0.1998336840676125

Y se grafican con el siguiente código:

theta = np.linspace(-np.pi,np.pi,201)
plt.rcParams[“figure.figsize”] = (5,5)

plt.plot(np.cos(theta),np.sin(theta))
plt.scatter(np.real(z),np.imag(z), marker=’o’)
plt.scatter(np.real(p),np.imag(p), marker=’x’)
plt.title(‘Grafica polos y ceros filtro digital’)

Figura 58. Gráfica de polos y ceros del filtro digital pasa-banda, ωd=1.61 [rad⁄muestra].

A partir de la gráfica anterior, se pueden extraer las siguientes conclusiones:

1. 	 En este caso, existe un cero en z = -1 y otro en z = 1, dado que el filtro
es pasa-banda.

2.	 Los dos polos se ubican en el semicírculo izquierdo del plano z, dado
que la frecuencia de resonancia, ωd, es mayor a π⁄2.

1- 0.07294142z-1 + 0.60033263z-2

94 Dora Maria Ballesteros, Diego Renza

5.4.	 FILTRO BUTTERWORTH
En esta última sección de diseño de filtros IIR, trabajaremos con los filtros But-
terworth, los cuales se caracterizan por:

•	 Respuesta plana en la banda de paso.

•	 En la frecuencia de corte tiene una ganancia de -3 dB en escala loga-
rítmica, o de √2⁄2 en escala lineal, respecto a la amplitud en la banda
de paso.

•	 H(s) solamente posee polos.

Apoyándonos en Python tenemos dos estrategias para diseñar los filtros Butterwor-
th, las cuales son:

	 Diseñar un filtro análogo Butterworth y aplicar Transformada Bilineal.

	 Diseñar directamente el filtro digital Butterworth.

A continuación, exploraremos las dos estrategias de diseño, a partir de ejemplos.

Ejemplo 1: filtro Butterworth análogo y Transformada Bilineal

Se quiere diseñar un filtro Butterworth pasa-bajo, a partir de un filtro análogo y
aplicando Transformada Bilineal, para diferentes valores de orden del filtro (específi-
camente, N = 2,4,6,8,10). La frecuencia de corte del filtro análogo es Ωc = 100 [Hz].

•	 Graficar la respuesta en frecuencia del filtro análogo, para N = 2,4,6,8,10.

•	 Escribir H(s) cuando N = 2.

•	 Calcular el filtro digital a partir del filtro análogo aplicando Transformada
Bilineal, con fs = 10 * Ωc. Graficar la respuesta en frecuencia del filtro digi-
tal Butterworth, para N = 2,4,6,8,10

•	 Escribir H(z) cuando N = 2.

•	 Obtener los polos y ceros del filtro digital Butterworth, para N =
2,4,6,8,10 Graficar los polos y ceros del filtro digital Butterworth, para
N = 2,4,6,8,10.

Respuesta en frecuencia del filtro análogo, N = 2,4,6,8,10:
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
f = 100
wn = f * 2 * np.pi

95PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

N = 2
b2,a2 = signal.iirfilter(N, wn, btype=’lowpass’, analog=True,
ftype=’butter’)
ws2, hs2 = signal.freqs(b2, a2)
wsHz2=ws2/(2*np.pi)
plt.rcParams[“figure.figsize”] = (14,8)
plt.plot(wsHz2, (np.abs(hs2)), label=r’$|H(s)| con N=2$’)
plt.legend()
plt.xlabel(‘Frecuencia [Hz]’)
plt.ylabel(‘Magnitud’)
plt.title(‘Respuesta en frecuencia filtro pasa bajo’)
plt.grid()

N = 4
b4,a4 = signal.iirfilter(N, wn, btype=’lowpass’, analog=True,
ftype=’butter’)
ws4, hs4 = signal.freqs(b4, a4)
wsHz4=ws4/(2*np.pi)
plt.plot(wsHz4, (np.abs(hs4)), label=r’$|H(s)| con N=4$’)
plt.legend()

N = 6
b6,a6 = signal.iirfilter(N, wn, btype=’lowpass’, analog=True,
ftype=’butter’)
ws6, hs6 = signal.freqs(b6, a6)
wsHz6=ws6/(2*np.pi)
plt.plot(wsHz6, (np.abs(hs6)), label=r’$|H(s)| con N=6$’)
plt.legend()

N = 8
b8,a8 = signal.iirfilter(N, wn, btype=’lowpass’, analog=True,
ftype=’butter’)
ws8, hs8 = signal.freqs(b8, a8)
wsHz8=ws8/(2*np.pi)
plt.plot(wsHz8, (np.abs(hs8)), label=r’$|H(s)| con N=8$’)
plt.legend()

N = 10
b10,a10 = signal.iirfilter(N, wn, btype=’lowpass’, analog=True,
ftype=’butter’)
ws10, hs10 = signal.freqs(b10, a10)
wsHz10=ws10/(2*np.pi)
plt.plot(wsHz10, (np.abs(hs10)), label=r’$|H(s)| con N=10$’)
plt.legend()
plt.show()

Nota: Tener en cuenta que el vector de frecuencias, ws, se divide entre 2π, para que
la gráfica quede en [Hz].

Obteniendo las siguientes respuestas en frecuencia del filtro análogo:

96 Dora Maria Ballesteros, Diego Renza

Figura 59. Respuesta en frecuencia filtro análogo Butterworth, Ωc = 100[Hz] y N = 2,4,6,8,10.

De la figura anterior se puede identificar que independiente del orden del filtro, la
ganancia en la frecuencia de corte es la misma, correspondiente a 0.707. Es decir, to-
das las curvas cruzan por el mismo valor de ganancia cuando Ωc = 100[Hz]. Adicio-
nalmente, a medida que el valor de N aumenta, entonces la caída entre la banda de
paso y la banda de rechazo se hace más pronunciada, es decir, mayor atenuación en
las frecuencias cercanas a la de corte (se aproxima en mayor medida al filtro ideal).

Función de transferencia del filtro análogo, para N = 2:

Previamente se han encontrado las constantes de los polinomios tanto del numera-
dor como del denominador del filtro análogo, en las variables “b” y “a”. Para el caso
de N = 2, se utilizan b2 y a2.
b2

array([394784.17604357])

a2

array([1.00000000e+00, 8.88576588e+02, 3.94784176e+05])

A partir de los resultados anteriores, se tiene que:

H(s) ≅ 39.47*104

Nota: por simplicidad se expresó H(s) solamente con dos cifras decimales.

Cálculo de H(z) y respuesta en frecuencia del filtro digital:

Se utiliza *signal.bilinear para realizar el mapeo entre el filtro análogo y el
filtro digital, y signal.freqz para la respuesta en frecuencia del filtro digital.

 s2 + 8.88 * 102 s + 3.94 * 105

97PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

fs= 10*f # frecuencia de muestreo en Hz
filtz2 = signal.dlti(*signal.bilinear(b2, a2, fs))
wz2, hz2 = signal.freqz(filtz2.num, filtz2.den)
plt.plot(wz2, (np.abs(hz2)), label=r’$|H(z)|$’) # se repite para los
demás valores de N
plt.legend()
plt.xlabel(‘Frecuencia normalizada [rad/muestra]’)
plt.ylabel(‘Magnitud’)
plt.title(‘Respuesta en frecuencia del filtro digital’)
plt.grid()

Obteniendo las siguientes respuestas en frecuencia del filtro digital:

Figura 60. Respuesta en frecuencia filtro digital Butterworth, ω
d

= 0.6 [rad⁄muestra] y N = 2,4,6,8,10.

Teniendo en cuenta que se aplicó Transformada Bilineal para el diseño del filtro digi-
tal, entonces se utiliza la ecuación que relaciona la frecuencia del filtro análogo con
la del filtro digital que se presentó en la sección 5.3, así:

fcdigital= 2 * np.arctan(wn/(2*fs))
print(fcdigital)

0.6087915947292302

Función de transferencia del filtro digital, para N=2:

A partir de los vectores filtz.num y filtz.den se encuentran las constantes de los po-
linomios del numerador y denominador de H(z), respectivamente. Específicamente
para N = 2, se utiliza filtz2.num y filtz2.den.

filtz2.num

array([0.06396438, 0.12792877, 0.06396438])

filtz2.den

array([1. , -1.16826067, 0.42411821])

Y entonces,

		 H(z) ≅ 0.0639 + 0.1279z-1 + 0.0639z-2

Nota: por simplicidad se expresó H(z) solamente con cuatro cifras decimales.
 1 - 1.1683z-1 + 0.4241z-2

98 Dora Maria Ballesteros, Diego Renza

Cálculo y gráfica de los polos y ceros del filtro digital, para N = 2,4,6,8,10:
z2, p2, k2 = signal.tf2zpk(filtz2.num,filtz2.den)
z4, p4, k4 = signal.tf2zpk(filtz4.num,filtz4.den)
z6, p6, k6 = signal.tf2zpk(filtz6.num,filtz6.den)
z8, p8, k8 = signal.tf2zpk(filtz8.num,filtz8.den)
z10, p10, k10 = signal.tf2zpk(filtz10.num,filtz10.den)

theta = np.linspace(-np.pi,np.pi,201)
plt.rcParams[“figure.figsize”] = (5,5)

plt.plot(np.cos(theta),np.sin(theta))
plt.scatter(np.real(z2),np.imag(z2), marker=’o’)
plt.scatter(np.real(p2),np.imag(p2), marker=’x’)
plt.title(‘Gráfica polos y ceros filtro digital, N=2’)

…

plt.plot(np.cos(theta),np.sin(theta))
plt.scatter(np.real(z10),np.imag(z10), marker=’o’)
plt.scatter(np.real(p10),np.imag(p10), marker=’x’)
plt.title(‘Gráfica polos y ceros filtro digital, N=10 ‘)

Y se obtienen las gráficas que se presentan en la Figura 61. Se puede apreciar que
independiente del orden del filtro todos los ceros se ubican en z = -1 (por ser un
filtro pasa-bajos), y que todos los polos se ubican en el semicírculo derecho (dado
que ωd < π⁄2).

		 a)				 b)

		 c)					 d)

					 e)

Figura 61. Gráfica de polos y ceros del filtro pasa pasa-bajo Buttherworth digital, ωd = 0.6
[rad⁄muestra] y N = 2,4,6,8,10. Estrategia de diseño # 1.

99PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Ejemplo 2: filtro Butterworh digital

Se quiere diseñar directamente un filtro Butterworth digital, correspondiente con
un filtro análogo con Ωc = 100 [Hz], fs = 10 * Ωc , y diferentes valores de orden del
filtro, específicamente N = 2,4,6,8,10.

•	 Calcular Hz y graficar el filtro digital Butterworth, para N = 2,4,6,8,10.

•	 Escribir Hz cuando N = 2.

•	 Obtener los polos y ceros cuando N = 2,4,6,8,10. Graficar los polos y
ceros cuando N = 2,4,6,8,10.

Como primer paso, debemos encontrar la frecuencia normalizada del filtro digital,
la cual la podemos expresar como:

		 wn = Ωc 			 Ecuación 49

Que, en este caso es:

			 wn = 100 = 0.2

Nota: tener en cuenta que 0 < wn < 1 .

Posteriormente, utilizamos la instrucción signal.iirfilter, haciendo analo-
g=False.

Cálculo de H(z) y gráfica de la respuesta en frecuencia del filtro digital:

import numpy as np
from scipy import signal
import matplotlib.pyplot as plt

N = 2
f = 100
fs = 10*f
wn = f/(fs/2)
b2, a2 = signal.iirfilter(N, wn, btype=’lowpass’, analog=False,
ftype=’butter’)
wz2, hz2 = signal.freqz(b2, a2, fs)
plt.rcParams[“figure.figsize”] = (14,8)
plt.plot(wz2, (np.abs(hz2)), label=r’$|H(z)|, N=2$’)
plt.legend()
plt.xlabel(‘Frecuencia normalizada [rad/muestra]’)
plt.ylabel(‘Magnitud’)
plt.title(‘Rta frecuencia filtro digital Butterworth’)
plt.grid()

N = 4
b4, a4 = signal.iirfilter(N, wn, btype=’lowpass’, analog=False,
ftype=’butter’)
wz4, hz4 = signal.freqz(b4, a4, 4000)
plt.plot(wz4, (np.abs(hz4)), label=r’$|H(z)|, N=4$’)
plt.legend()

 fs/2

1000
2

100 Dora Maria Ballesteros, Diego Renza

N = 6
b6, a6 = signal.iirfilter(N, wn, btype=’lowpass’, analog=False,
ftype=’butter’)
wz6, hz6 = signal.freqz(b6, a6, 4000)
plt.plot(wz6, (np.abs(hz6)), label=r’$|H(z)|, N=6$’)
plt.legend()

N = 8
b8, a8 = signal.iirfilter(N, wn, btype=’lowpass’, analog=False,
ftype=’butter’)
wz8, hz8 = signal.freqz(b8, a8, 4000)
plt.plot(wz8, (np.abs(hz8)), label=r’$|H(z)|, N=8$’)
plt.legend()

N = 10
b10, a10 = signal.iirfilter(N, wn, btype=’lowpass’, analog=False,
ftype=’butter’)
wz10, hz10 = signal.freqz(b10, a10, 4000)
plt.plot(wz10, (np.abs(hz10)), label=r’$|H(z)|, N=10$’)
plt.legend()
plt.show()

Figura 62. Respuesta en frecuencia filtro Butterworth digital pasa pasa-bajo, ωN = 0.2 y
N = 2,4,6,8,10. Estrategia de diseño #2.

Función de transferencia del filtro digital, para N = 2:

A partir de los vectores b y a se encuentran las constantes de los polinomios del
numerador y denominador de H(z), respectivamente. Específicamente para N = 2,
se utiliza b2 y a2.

b2

array([0.06745527, 0.13491055, 0.06745527])

a2

array([1. , -1.1429805, 0.4128016])

Y entonces,

101PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

		 H(z) ≅ 0.0674 + 0.1349z-1 + 0.0674z-2

Nota 1: por simplicidad se expresó H(z) solamente con cuatro cifras decimales.

Nota 2: se puede comparar este valor de H(z) con el obtenido en el ejemplo #1 de
esta sección.

Cálculo y gráfica de los polos y ceros del filtro digital, para N=2,4,6,8,10:
z2, p2, k2 = signal.tf2zpk(b2, a2)
z4, p4, k4 = signal.tf2zpk(b4, a4)
z6, p6, k6 = signal.tf2zpk(b6, a6)
z8, p8, k8 = signal.tf2zpk(b8, a8)
z10, p10, k10 = signal.tf2zpk(b10, a10)

Se utiliza el mismo código que del ejemplo # 1 de esta sección para graficar los
polos y ceros de los filtros digitales. Las gráficas se presentan en la Figura 63.

		 a)			 	 b)

		 c)			 	 d)

					 e)

Figura 63. Gráfica de polos y ceros del filtro pasa pasa-bajo, ωN = 0.2 y N = 2,4,6,8,10.
Estrategia de diseño # 2.

1 - 1.1429z-1 + 0.4128z-2

102 Dora Maria Ballesteros, Diego Renza

Al comparar la Figura 63 con la Figura 61, se aprecia que la ubicación de los polos y
ceros es muy similar, por lo que las dos estrategias de diseño de esta sección per-
miten llegar al “mismo resultado”.

5.5.	 FILTRADO DE SEÑALES CON FILTROS IIR
Para finalizar esta sección de filtros IIR, vamos a filtrar una señal con un filtro IIR
diseñado con el método de Transformada Bilineal, a partir de un filtro análogo.

Para ello, utilizaremos la siguiente señal:

Figura 64. Señal en el dominio del tiempo, xnoise[n].

Esta señal se ha generado con el siguiente código en Python,

#Paso 1: importar librerías de trabajo
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
from scipy import signal
import math

#Paso 2: generar una señal sin ruido
f = 500 # Hz
fs = 100 * f
step = 1/fs
frad = f * 2 * math.pi
t = np.arange(0,10/f,step)
x = np.sin(frad*t)

#Paso 3: generar ruido aleatorio
samples = len(x)
An= 0.8
noise = An*np.random.rand(samples) - An/2

Paso 4: sumar la señal senoidal con la señal de ruido
xnoise = x + noise
plt.plot(t,xnoise)
plt.xlabel(‘tiempo [s]’)

plt.ylabel(‘Amplitud’)

103PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Visualizando xnoise[n], ésta contiene dos señales, una correspondiente a x[n], y otra
a noise[n]. Específicamente, x[n] es una señal senoidal; mientras que, noise[n], es un
ruido de fondo. Sin embargo, para poder tener información más puntual del com-
portamiento en frecuencia tanto de x[n] como de noise[n], es necesario realizar un
análisis espectral de la señal xnoise[n].

Entonces, utilizamos el código en Python que vimos en el Capítulo 1, para el cálculo
y gráfica de la Transformada de Fourier de la señal.

import scipy.fftpack as fourier
L=len(xnoise)
transformada = fourier.fft(xnoise)
magnitud = abs(transformada)
magnitud_lateral = magnitud[0:L//2]
fase = np.angle(transformada)
frecuencias = fs*np.arange(0, L//2)/L
plt.plot(frecuencias, magnitud_lateral)
plt.xlabel(‘Frecuencia (Hz)’, fontsize=’10’)
plt.ylabel(‘|FFT|’, fontsize=’10’)
plt.show()

Obteniendo el siguiente espectro de xnoise[n]

Figura 65. Espectro de xnoise[n].

Observamos que existe un tono (señal de frecuencia pura) correspondiente a la
señal senoidal, y que el ruido se encuentra en todos los valores de frecuencia, hasta
fs⁄2 (es decir 25K [Hz]).

Para determinar la frecuencia exacta correspondiente a la señal senoidal, vamos a
apoyarnos en el siguiente código en Python:

np.max(magnitud_lateral)

496.67405522769

x = np.where(abs(magnitud_lateral) == np.max(magnitud_lateral))
f_tono = np.min(x)*(fs/2)/len(magnitud_lateral)
print(f_tono)
500.0

De tal forma que, el tono se encuentra ubicado en los 500 [Hz], de amplitud 496.67.

Teniendo en cuenta que queremos filtrar el ruido que abarca todas las frecuencias,
y que la señal de interés se encuentra únicamente en la frecuencia de 500 [Hz], lo

104 Dora Maria Ballesteros, Diego Renza

más conveniente en este caso es diseñar un filtro pasa-banda de banda angosta, con
Q > 0.5 (ej. Q = 1), y Ωr = 500 [Hz].

Entonces, la función de transferencia del filtro análogo queda de la siguiente forma:

A partir de H(s) se escribe el siguiente código en Python:

import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
f = 500
frad = 2*3.14*f
Q = 1
G = 1
nums=np.array([0, G*frad/Q, 0])
dens=np.array([1, frad/Q, frad*frad])

ws, hs = signal.freqs(nums, dens)
plt.plot(ws, (np.abs(hs)), label=r’$|H(s)|$’)
plt.legend()
plt.xlabel(‘Frecuencia [rad/seg]’)
plt.ylabel(‘Magnitud’)
plt.title(‘Respuesta en frecuencia del filtro análogo’)
plt.grid()

Y obtenemos la siguiente respuesta en frecuencia del filtro análogo,

Figura 66. Respuesta en frecuencia filtro análogo pasa-banda, Ωr = 1000π [rad⁄seg].

Y aplicamos Transformada Bilineal, para obtener H(z), así:

filtz = signal.dlti(*signal.bilinear(nums, dens, fs))
wz, hz = signal.freqz(filtz.num, filtz.den)
plt.plot(wz, (np.abs(hz)), label=r’$|H(z)|$’)
plt.legend()
plt.xlabel(‘Frecuencia normalizada [rad/muestra]’)
plt.ylabel(‘Magnitud’)
plt.title(‘Respuesta en frecuencia del filtro digital’)
plt.grid()

105PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 67. Respuesta en frecuencia filtro digital pasa-banda, ωd = 0.061 [rad⁄muestra].

La frecuencia de corte del filtro digital la obtenemos tanto a partir de la gráfica de
la respuesta en frecuencia del filtro, como de la ecuación teórica que relaciona la
frecuencia del filtro análogo con la frecuencia del filtro digital.

Utilizamos el siguiente código en Python:

np.max(abs(hz))

0.9958317963050908

x = np.where(abs(hz) == np.max(abs(hz)))
wcd = np.max(x)*3.14/len(wz)
print(wcd)

0.061328125000000004

wd =2*np.arctan(frad/(fs*2))
wd

0.06277937277186546

Verificamos que los valores son similares, entonces el filtro quedó bien diseñado.

Posteriormente, encontramos las constantes de los polinomios del numerador y
denominador de H(z), así:

filtz.num

array([0.01544233, 0. , -0.01544233])

filtz.den

array([1. , -1.96523623, 0.96911534])

Y escribimos H(z) de la siguiente manera,

H(z) = 0.015 - 0.015z-2

Nota: por simplicidad se han utilizado solamente tres cifras decimales en H(z).

A partir de H(z) filtramos la señal con signal.filtfilt, con el siguiente código:

1 - 1.965z-1 + 0.969z-2

106 Dora Maria Ballesteros, Diego Renza

filtrada = signal.filtfilt(filtz.num, filtz.den, xnoise)
plt.rcParams[“figure.figsize”] = (10,6)

plt.plot(t,filtrada)

Nota: a diferencia del caso de filtros FIR, ahora el parámetro “a” de la instrucción
signal.filtfilt no es una constante de valor igual a uno, sino que también es
un vector. Específicamente, con el nombre de las variables que hemos utilizado,
corresponde a filtz.den.

Obteniendo como resultado:

Figura 68. Señal filtrada en el dominio del tiempo.

Adicionalmente, podemos verificar que el espectro de la señal filtrada no contiene
el ruido de fondo, con el siguiente código en Python:

transformada2 = fourier.fft(filtrada)
magnitud2 = abs(transformada2)
magnitud_lateral2 = magnitud2[0:L//2]
fase2 = np.angle(transformada2)
frecuencias2 = fs*np.arange(0, L//2)/L
plt.rcParams[“figure.figsize”] = (10,6)
plt.plot(frecuencias2, magnitud_lateral2)
plt.xlabel(‘Frecuencia (Hz)’, fontsize=’10’)
plt.ylabel(‘|FFT|’, fontsize=’10’)
plt.show()

Figura 69. Espectro de la señal filtrada.

 

107PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

CAPÍTULO 6.

Procesamiento de Imágenes
Como capítulo final de este libro, trabajaremos con señales en dos dimensiones,
específicamente con imágenes. Esto te permitirá obtener las bases conceptuales y
de programación para abordar cursos más avanzados en procesamiento de imagen,
por ejemplo, de visión por computador.

Al finalizar el capítulo, deberás estar en capacidad de:

1.	 Explicar las diferencias entre imágenes blanco-negro, escala de grises, e
imágenes a color.

2.	 Explicar en qué consisten los modelos de color RGB y HSV, así como rea-
lizar conversiones utilizando la librería de OpenCV de Python.

3.	 Realizar ecualización de imagen utilizando la librería de OpenCV de Python.

4.	 Distinguir diferentes tipos de ruido en imágenes.

5.	 Reconocer qué tipo de filtro es adecuado para reducir un tipo de ruido
específico en la imagen.

6.	 Explicar el concepto de convolución en imágenes.

7.	 Realizar detección de bordes a partir de diferentes tipos de kernels.

8.	 Explicar las diferencias entre DCT y DFT en imágenes.

9.	 Aplicar la DCT o la DFT en imágenes utilizando la librería de OpenCV de
Python.

10.	 Explicar el concepto de compresión de imágenes.

6.1.	 CONCEPTOS BÁSICOS DE IMÁGENES
En las primeras secciones del libro hemos trabajado con señales uni-dimensionales,
y gran parte de los ejemplos se han enfocado en audio. En este capítulo, nos enfo-
caremos en imágenes, que corresponden a señales en 2D, cuyos ejes corresponden
a filas y columnas.

108 Dora Maria Ballesteros, Diego Renza

Lo primero que debemos saber es que no todas las imágenes tienen las mismas
características. Por ejemplo, pueden variar entre ellas el tamaño y el color utilizado.

En relación con el tamaño, la unidad de medida es el píxel, y la resolución de la
imagen está dada por la cantidad de filas y columnas. Entonces, una imagen de 100
x 100 tendrá 10,000 píxeles de resolución, mientras que, una imagen de 1,000 x
1,000 tendrá 1M píxeles de resolución. En las cámaras digitales actuales es típico
encontrar resoluciones de varios mega píxeles. Entonces, hemos identificado la pri-
mera diferencia entre las señales 1D correspondientes a audio y las imágenes, en el
primer caso hablábamos de muestras de la señal, y ahora hablaremos de píxeles de
la imagen.

La segunda característica de la imagen corresponde a su color. Podemos encontrar
imágenes a blanco-negro (BW: black and white), a escala de grises y a color de tres
bandas (aunque también existen imágenes con mayor número de canales, las cuales
no abordaremos en este libro).

Las primeras, BW, tienen solamente un bit asociado a cada píxel de la imagen, de tal
forma que, si la imagen tiene 1M píxeles, entonces tendrá 1M bits. El valor de “1” co-
rresponde al blanco, mientras que, el valor de “0” corresponde al negro. Las segun-
das, imágenes a escala de grises, tienen 8 bits por cada píxel, y el rango de color va
del negro (“00000000”) al blanco (“11111111”) pasando por distintas tonalidades
de gris, para un total de 256 colores. Entonces, una imagen de 1M píxeles tendrá
8Mbits, o de forma equivalente 1MB. Finalmente, tenemos las imágenes a color, que
típicamente se denominan RGB (Red, Green, Blue), aunque realmente ese es uno de
los espacios de color que existen. En este caso, por cada píxel de la imagen tenemos
8 bits asociados a cada uno de los tres canales de color, para un total de 24 bits por
píxel. Retomando el mismo ejemplo, para la imagen de 1M píxeles, tendremos 3MB.

Para ilustrar de mejor forma las diferencias en términos de color de las imágenes
BW, a escala de grises y a color, se presenta en la Figura 70 una imagen del reposi-
torio personal de los autores del libro.

	 (a)				 (b)			 (c)

Figura 70. Ejemplo de imagen: a) BW, b) Escala de grises, c) Color. Fuente: repositorio
personal de los autores.

109PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

6.2.	 ESPACIOS DE COLOR
El espacio de color más ampliamente conocido se denomina RGB, donde la imagen
se representa en tres canales o “bandas” de color, una correspondiente al rojo, otra
al verde, y la última al azul. Cada color tiene 256 tonalidades distintas (28), y en total
se tiene una paleta de16,776,216 colores (es decir, 224). Retomando el ejemplo de la
sección anterior, se presentan las tres bandas de color en la Figura 71.

	 (a)				 (b)			 (c)

Figura 71. Ejemplo de imagen RGB: a) banda R, b) banda G, c) banda B. Fuente: repositorio
personal de los autores.

	 (a)				 (b)			 (c)

Figura 72. Ejemplo de imagen HSB: a) banda H, b) banda S, c) banda B. Fuente: repositorio
personal de los autores.

Otro espacio de color corresponde a HSV (Hue, Saturation, Value) o también conoci-
do como HSB (Hue, Saturation, Brightness). En este espacio de color, la primera banda
corresponde al tono de la imagen, la segunda a la saturación de la imagen, y la terce-
ra al brillo de la imagen. Para nuestra foto de la playa, las tres bandas se presentan en
la Figura 72. En este espacio de color, la banda de brillo (Figura 72b) es muy similar
a la imagen a escala de grises (que presentamos en la Figura 70b).

6.3.	 INTRODUCCIÓN A LA LIBRERÍA OPENCV
Bueno, en este punto te preguntarás como se puede leer la imagen en lenguaje
Python, convertir una imagen a color en una imagen a escala de grises y/o BW,
así como transformar una imagen de un espacio a color a otro. Para ello, vamos a
utilizar la librería OpenCV de Python, la cual es especializada en procesamiento de
imágenes4.
4 https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_tutorials.html

110 Dora Maria Ballesteros, Diego Renza

Figura 73. Logo de OpenCV.

Entonces, manos a la obra con el código en Python.

Paso 1: importar la librería de OpenCV, leer la imagen que previamente hemos subido a
nuestro entorno de trabajo en Colaboratory, y conocer el tamaño de la imagen.

import cv2
img = cv2.imread(“/content/Fig74.jpg”)
img.shape

Para la imagen de prueba, el resultado es:

(300, 400, 3)

Paso 2: visualización de la imagen. Para ello se debe importar un patch en Colaboratory.

from google.colab.patches import cv2_imshow
cv2_imshow(img)

Figura 74. Imagen a color – foto playa.

Nota: si trabajas en Jupyter Notebook no es necesario que importes el patch, y
puedes utilizar cv2.imshow.

Paso 3: conversión de imagen RGB a escala de grises

img_gray=cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

cv2_imshow(img_gray)

111PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 75. Imagen a escala de grises – foto playa.

Paso 4: conversión de imagen a escala de grises en BW

r,img_bw = cv2.threshold(img_gray,45,255,cv2.THRESH_BINARY)

cv2_imshow(img_bw)

Figura 76. Imagen a blanco y negro – foto playa.

Lo que hemos realizado en este paso 4 se conoce como umbralización de la imagen
(o thresholding, en inglés), proceso en el cual a los píxeles que superan el umbral se
les asigna el color blanco, y a los que no superan el umbral se les asigna el color
negro. Si modificamos el valor del umbral, la imagen va a lucir más clara (umbral
bajo) o más oscura (umbral alto). Podemos apreciar que las palmeras tienen el color
negro, mientras que el mar y el cielo el color blanco, dado que, en la imagen a escala
de grises la tonalidad de gris tanto del cielo como del mar es mucho más clara que
la de las palmeras.

La instrucción cv2.threshold5 requiere de dos valores numéricos, el primero
corresponde al umbral, y el segundo al valor que se asigna en caso de que el píxel
supere el umbral. En el ejemplo, el umbral es 45 y el valor asignado a los píxeles que
superen el umbral es 255.

5 https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_thresholding/
py_thresholding.html

112 Dora Maria Ballesteros, Diego Renza

Paso 5: guardar las imágenes en tu entorno de trabajo

cv2.imwrite(‘image_color.jpg’,img)
cv2.imwrite(‘image_gray.jpg’,img_gray)
cv2.imwrite(‘image_bw.jpg’,img_bw)

Paso 6: conversión de RGB a HSV

H, S, V = cv2.split(cv2.cvtColor(img, cv2.COLOR_RGB2HSV))

cv2_imshow(H)

Figura 77. Imagen canal H – foto playa.

cv2_imshow(S)

Figura 78. Imagen canal S – foto playa.

cv2_imshow(V)

Figura 79. Imagen canal V – foto playa.

113PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Hasta este punto, ya sabemos cómo leer imágenes con la librería OpenCV, convertir
una imagen a color en una imagen a escala de grises y BW, y convertir del espacio
de color RGB a HSV. Puedes ampliar la información de conversión de espacios de
color en la documentación de OpenCV de cv2.cvtColor6.

6.4. 	 ECUALIZACIÓN DE IMÁGENES
¿Alguna vez te ha pasado que tomas una foto con poca luz y la imagen te quedó muy
oscura? ¿Sabes cómo funcionan los ajustes de brillo en los celulares, por ejemplo,
para aclarar fotos oscuras? ¡Eso lo aprenderás en esta sección y adiós a borrar fotos
porque quedaron muy oscuras!

Lo primero que debemos conocer es el concepto de histograma de una imagen y
como calcularlo y graficarlo en lenguaje Python. Pues bueno, la definición general
del histograma es que es una representación gráfica de la ocurrencia de los datos.
En el caso de imágenes, el histograma muestra cuántos píxeles de la imagen tienen
color 0, cuántos tienen color 1, y así sucesivamente hasta cuantos píxeles tienen co-
lor 255 (en imágenes a escala de grises). En el caso de imágenes a color, presentará
la cantidad de píxeles para cada uno de los 256 niveles de color por banda, es decir,
es necesario dibujar tres histogramas, uno para la banda R, otro para la banda G, y
otro para la banda B. Si la imagen es BW, entonces el histograma solamente tendrá
dos niveles de color, el 0 correspondiente al negro, y el 1 correspondiente al blanco.

A continuación, se presentan los pasos.

Paso 1: Lectura de la imagen a color

import cv2
img = cv2.imread(“/content/Fig80.jpg”)

Y obtengo esta hermosa imagen. Si, ya sé que está un poco oscura, pero más ade-
lante aprenderemos a aclararla.

Figura 80. Imagen a color – foto mar. Fuente: repositorio personal de los autores.

6 https://opencv24-python-tutorials.readthedocs.io/en/stable/py_tutorials/py_imgproc/py_colorspaces/py_colorspaces.html

114 Dora Maria Ballesteros, Diego Renza

Por ahora, vamos a conocer el tamaño de la imagen con img.shape. El resultado
es (4032, 3024, 3. Es decir que, nuestra imagen tiene 4032 filas, 3024 columnas y 3
bandas de color (por defecto en el espacio BGR). El total de píxeles de la imagen es
4032 x 3024, que es igual a 12,192,768. En términos de bytes, el total se calcula así:
4032 x 3024 x 3, que es igual a 36,578,304, dado que en cada banda de color un píxel
tiene 1B, y la imagen tiene tres bandas de color. Ahora, te preguntarás si ese tamaño
que acabamos de encontrar es el mismo que te aparece en tu PC en relación con
esa imagen, y si revisas te darás cuenta de que solo pesa 1,54 KB. La diferencia entre
el cálculo que acabamos de realizar y el peso real de la imagen radica en su tipo de
formato, (en este caso es *.jpg), el cual es un formato de compresión de imágenes
que reduce su peso, pero conserva su resolución espacial. Si la imagen estuviese en
formato bmp de 24 bits, el espacio en disco sería el calculado previamente (alrede-
dor de 36 MB).

Para facilitar la visualización de la imagen en Colaboratory, vamos a realizar un pro-
ceso de redimensionamiento de la imagen, para que quede de tamaño 400 filas y 300
columnas, para ello utilizaremos el siguiente código:

Paso 2: Redimensionamiento de la imagen

img=cv2.resize(img, (300, 400), interpolation = cv2.INTER_AREA)

Ten en cuenta que primero incluimos la cantidad de columnas que deseamos que
la imagen tenga, y después la cantidad de filas. Entonces, la cantidad de píxeles por
banda es ahora de 400 x 300, que es igual a 120,000. El siguiente paso, es convertir
la imagen a escala de grises.

Paso 3: Conversión imagen a color en escala de grises

img_gray=cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

cv2_imshow(img_gray)

Obteniendo esta imagen:

Figura 81. Imagen a escala de grises – foto mar.

115PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Bueno, ahora sí, vamos a dibujar nuestro histograma y a mejorar la apariencia de la
imagen.

Paso 4: Histograma de la imagen a escala de grises

import matplotlib.pyplot as plt
pixels=img_gray.shape[0]*img_gray.shape[1]
print(‘la cantidad de píxeles de la imagen es:’, pixels)
hist = cv2.calcHist([img_gray],[0],None,[256],[0,256])
plt.plot(hist)
plt.show()

Obteniendo el siguiente resultado:

la cantidad de píxeles de la imagen es: 120000

Figura 82. Histograma de la imagen a escala de grises – foto mar.

A partir del histograma se identifica que la imagen está altamente concentrada en
intensidades de píxel alrededor de 60 (en escala 0 a 255), y que existen muy pocos
píxeles con intensidades superiores a 128 (mitad de escala). Esto es coherente con
la “apariencia oscura” de la imagen.

A continuación, mejoraremos la apariencia de la imagen a escala de grises.

Paso 5: Ecualización del histograma de la imagen a escala de grises

img_gray_eq = cv2.equalizeHist(img_gray)
cv2_imshow(img_gray_eq)

Como resultamos, obtenemos:

Figura 83. Imagen ecualizada a escala de grises – foto mar.

116 Dora Maria Ballesteros, Diego Renza

Si comparas esta imagen con la imagen a escala de grises original (Paso 3), notarás
una gran diferencia. Es más clara. ¿Cómo crees entonces que es el histograma de
la imagen ecualizada?

Paso 6: Histograma de la imagen a escala de grises ecualizada

hist2 = cv2.calcHist([img_gray_eq],[0],None,[256],[0,256])
plt.plot(hist2)

Figura 84. Histograma de la imagen ecualizada a escala de grises – foto mar.

Este histograma es significativamente diferente al obtenido en el Paso 4. Ahora, una
gran parte de los píxeles de la imagen tienen niveles de color mayores a 128, y, por
lo tanto, la imagen tiene una apariencia clara. Por otro lado, es típico en los histogra-
mas ecualizados que se tengan numerosos picos de ocurrencia, y que no se tengan
curvas suavizadas como en los histogramas de imágenes naturales (sin ecualizar).

A continuación, dibujaremos el histograma por banda de color y ecualizaremos la
imagen a color.

Paso 7: Histograma de la imagen a color (histograma por cada banda de color)

img_RGB=cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
color = (‘r’,’g’,’b’)
for i,col in enumerate(color):
 histr = cv2.calcHist([img_RGB],[i],None,[256],[0,256])
 plt.plot(histr,color = col)
 plt.xlim([0,256])
plt.show()

En este punto es pertinente explicar que cuando leemos imágenes con OpenCV, las
bandas de color quedan en orden contrario al del espacio RGB. Es decir, primero la
banda B (azul), después la banda G (verde), y finalmente, la banda R (roja). Por ello, se
hace necesario convertir de BGR a RGB, y posteriormente dibujar el histograma de
cada una de las bandas (se puede realizar en gráficas independientes, o en la misma
gráfica como con este código).

El histograma que obtenemos es:

117PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 85. Histograma por banda de la imagen a color – foto mar.

Cada histograma se ha dibujado con el color correspondiente a su banda. El his-
tograma de la banda roja tiene la mayor parte de sus píxeles por debajo del color
50. El histograma de la banda verde tiene la mayor parte de sus píxeles con color
cercano a 50. Mientras que, el histograma de la banda azul tiene dos zonas de color
que sobresalen, alrededor de 50 y alrededor de 100, esta última con mayor cantidad
de píxeles. Aunque los histogramas son diferentes entre sí, tienen en común que en
los tres casos la cantidad de píxeles por encima del color 128 es prácticamente cero.

Paso 8: Ecualización del histograma de la imagen a color

H, S, V = cv2.split(cv2.cvtColor(img, cv2.COLOR_RGB2HSV))
V_equ = cv2.equalizeHist(V)
img_equ = cv2.cvtColor(cv2.merge([H, S, V_equ]), cv2.COLOR_HSV2RGB)
cv2_imshow(img_equ)

El proceso de ecualización de la imagen lo realizaremos en la banda V del espacio
de color HSV. Para lo cual, primero convertiremos la imagen de RGB a HSV, poste-
riormente realizaremos un split en las tres bandas, para así ecualizar únicamente la
banda V. Finalmente, volvemos a unir las tres bandas del espacio HSV (con la banda V
ecualizada), y convertimos de HSV a RGB. La imagen a color ecualizada es:

Figura 86. Imagen ecualizada a color – foto mar.

118 Dora Maria Ballesteros, Diego Renza

Mejoró con relación a la imagen del Paso 1, ¿cierto? Bueno, ya has aprendido un
concepto de procesamiento de imágenes que tiene una aplicación práctica. Cuando
vuelvas a cambiar el brillo de una imagen, recuerda que lo que estás haciendo es un
proceso de ecualización de su histograma.

Espero que te haya gustado esta temática. Si quieres ampliar la información de histo-
gramas en OpenCV, te invito a consultar la documentación de la librería7.

6.5. 	 RUIDO EN IMÁGENES
En esta sección aprenderemos a reconocer tres tipos diferentes de ruido presen-
tes en imágenes: guassiano (gaussian), uniforme (uniform), y sal y pimienta (salt and
pepper).

6.5.1.	 Ruido gaussiano:

Este ruido se caracteriza porque su distribución (histograma) tiene la forma de una
campana de gauss, en la que existe un valor central (con gran parte de los píxeles del
ruido), y pocos píxeles en los colores extremos. La forma y comportamiento está
definida por el promedio y la varianza. Si la varianza es baja, la campana de gauss es
angosta; mientras que, si la varianza es alta, la campana de gauss es ancha. El prome-
dio es el valor central de la campana.

Vamos ahora a generar este tipo de ruido para adicionarlo a una imagen a color y
visualizar su efecto. Para ello utilizaremos el siguiente código en Python:

import cv2
import numpy as np
from google.colab.patches import cv2_imshow
img = cv2.imread(“/content/Fig89.jpg”)
noise = np.zeros((img.shape[0], img.shape[1]),dtype=np.uint8)
gaussian_noise = np.zeros((img.shape[0], img.shape[1], img.sha-
pe[2]),dtype=np.uint8)
gaussian_noise[:,:,0]=cv2.randn(noise, 128, 30)
gaussian_noise[:,:,1]=cv2.randn(noise, 128, 30)
gaussian_noise[:,:,2]=cv2.randn(noise, 128, 30)
cv2_imshow(gaussian_noise)

Lo primero que hacemos es crear una matriz de ceros del mismo tamaño de la
imagen a la cual le adicionaremos el ruido. Posteriormente, con la instrucción
cv2.randn8 vamos a generar ruido gaussiano. Debemos seleccionar el valor
central de la distribución gaussiana (μ), y la desviación estándar (σ); para nuestro
caso μ = 128, y σ = 30. Este ruido gaussiano lo creamos para cada una de las
bandas a color (banda 0, banda 1 y banda 2, de gaussian_noise). El resultado se
presenta a continuación:

7 https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_histograms/py_ta-
ble_of_contents_histograms/py_table_of_contents_histograms.html#table-of-content-histograms	
8 https://docs.opencv.org/4.5.3/d2/de8/group__core__array.html#gaeff1f61e972d133a04ce3a5f81cf6808

119PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 87. Imagen a color – ruido gaussiano.

Para verificar que el ruido obtenido es de tipo gaussiano, utilizamos el siguiente
código:

import matplotlib.pyplot as plt
repetir este paso por canal
hist = cv2.calcHist([gaussian_noise],[0],None,[256],[0,256])
plt.plot(hist)
plt.show()

	 (a)				 (b)			 (c)
Figura 88. Histograma por banda de la imagen a color – ruido gaussiano.

Se verifica que los histogramas de la Figura 88 de cada uno de los canales, efectiva-
mente tienen forma de campana de gauss.

Como siguiente paso, leemos una imagen en Colaboratory9:

img = cv2.imread(“/content/Fig89.jpg”)
img.shape
img=cv2.resize(img, (640, 480), interpolation = cv2.INTER_AREA)
cv2_imshow(img)

Figura 89. Imagen a color – villa de leyva. Fuente: repositorio personal de los autores.

9 Esta imagen hace parte del repositorio personal del autor de este libro

120 Dora Maria Ballesteros, Diego Renza

Y adicionamos el ruido que previamente hemos creado, así:

noisy_img_gn = cv2.add(img, (gaussian_noise*0.5).astype(np.uint8))
cv2_imshow(noisy_img_gn)

El ruido gaussiano se multiplica por 0.5 para no saturar a la imagen, y se convierte en
formato entero de 8 bits con astype(np.uint8). Posteriormente, se adiciona
a la imagen a color con la instrucción cv2.add, obteniendo el siguiente resultado:

Figura 90. Imagen a color con ruido gaussiano – villa de leyva.

¿Cuál es el efecto de este tipo de ruido en la imagen?

Rta: La foto luce “envejecida”.

6.5.2.	 Ruido uniforme:

Otro ruido típico en imágenes es el ruido uniforme. A diferencia del ruido anterior,
este tiene una distribución uniforme de sus colores, es decir que no existe un color
central, sino que todos los colores (o tonos) tienen la misma cantidad de píxeles (o
aproximadamente la misma cantidad).

El procedimiento para crear este tipo de ruido es similar al caso anterior. Debemos
crear una matriz de ceros del mismo tamaño de la imagen, y posteriormente para
cada una de las bandas de color creamos el ruido. Sólo que en este caso utilizamos
la instrucción cv2.randu, en lugar de cv2.randn. Podemos utilizar el siguiente
código en Python:

noise = np.zeros((img.shape[0], img.shape[1]),dtype=np.uint8)
uniform_noise = np.zeros((img.shape[0], img.shape[1], img.sha-
pe[2]),dtype=np.uint8)
uniform_noise[:,:,0]=cv2.randu(noise, 0, 256)
uniform_noise[:,:,1]=cv2.randu(noise, 0, 256)
uniform_noise[:,:,2]=cv2.randu(noise, 0, 256)
cv2_imshow(uniform_noise)

Obteniendo el siguiente resultado:

121PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 91. Imagen a color – ruido uniforme.

Como siguiente paso dibujamos el histograma, banda a banda, así:

repetir este paso por canal
hist = cv2.calcHist([uniform_noise],[0],None,[256],[0,256])
plt.plot(hist)
plt.show()

Obteniendo:

	 (a)				 (b)			 (c)

Figura 92. Histograma por banda de la imagen a color – ruido uniforme.

Aunque el histograma que obtenemos no tiene una perfecta distribución uniforme,
la cantidad de píxeles para cada uno de los tonos (0 a 255) es muy similar entre
sí. Para el tamaño de imagen que hemos utilizado en este ejemplo, la cantidad de
píxeles por canal es 480 x 640 = 307.200. Esta cantidad de píxeles dividido en los
256 tonos es igual a 1.200. Si se revisa con detalle los histogramas, precisamente las
ocurrencias oscilan alrededor de ese valor.

Finalmente, adicionamos el ruido a la imagen a color, con el siguiente código en
Python:

noisy_img_un = cv2.add(img, (uniform_noise*0.5).astype(np.uint8))
cv2_imshow(noisy_img_un)

Cuyo resultado es:

122 Dora Maria Ballesteros, Diego Renza

Figura 93. Imagen a color con ruido uniforme – villa de leyva.

¿En qué se diferencia esta imagen de la obtenida al adicionar el
ruido gaussiano?

Rta: aparte de envejecida, tienen pequeños “gránulos” o “puntos
de arena” en toda la imagen. El efecto es notorio en zonas am-
plias y de pocos detalles, como el cielo o las nubes.

6.5.3.	 Ruido sal y pimienta:

Este tipo de ruido tiene dos tonos, uno correspondiente a la sal y el otro a la pi-
mienta. Para crear ruido de este tipo, lo primero que debemos hacer es crear ruido
uniforme para cada una de las bandas de color, y posteriormente aplicar un proceso
de umbralización (similar al que utilizamos cuando convertimos una imagen a escala
de grises en una imagen BW). Dependiendo del valor del umbral seleccionado, ten-
dremos más o menos píxeles correspondientes a sal y a pimienta.

Para el siguiente código en Python el umbral seleccionado es 10, y a los píxeles que
superen el umbral se les asigna el color 255 (máxima escala).

sp_noise=np.zeros((img.shape[0], img.shape[1], img.shape[2]),d-
type=np.uint8)
ret,impulse_noise0=cv2.threshold(uniform_noise[:,:,0],10,255,cv2.
THRESH_BINARY)
ret,impulse_noise1=cv2.threshold(uniform_noise[:,:,1],10,255,cv2.
THRESH_BINARY)
ret,impulse_noise2=cv2.threshold(uniform_noise[:,:,2],10,255,cv2.
THRESH_BINARY)
sp_noise[:,:,0]=impulse_noise0
sp_noise[:,:,1]=impulse_noise1
sp_noise[:,:,2]=impulse_noise2
cv2_imshow(sp_noise[:,:,0])

¡En este caso obtendremos poca pimienta y mucha sal!

123PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 94. Imagen a color con ruido sal y pimienta, con th = 10.

Y sus histogramas por banda, son:

repetir este paso por canal
hist = cv2.calcHist([sp_noise],[2],None,[256],[0,256])
plt.plot(hist)
plt.show()

Obteniendo:

	 (a)				 (b)			 (c)

Figura 95. Histograma por banda de la imagen a color – ruido sal y pimienta con th = 10.

Ahora, vamos a fijar un umbral alto, por ejemplo, de 200:

sp_noise=np.zeros((img.shape[0], img.shape[1], img.shape[2]),d-
type=np.uint8)
ret,impulse_noise0=cv2.threshold(uniform_noise[:,:,0],200,255,-
cv2.THRESH_BINARY)
ret,impulse_noise1=cv2.threshold(uniform_noise[:,:,1],200,255,-
cv2.THRESH_BINARY)
ret,impulse_noise2=cv2.threshold(uniform_noise[:,:,2],200,255,-
cv2.THRESH_BINARY)
sp_noise[:,:,0]=impulse_noise0
sp_noise[:,:,1]=impulse_noise1
sp_noise[:,:,2]=impulse_noise2
cv2_imshow(sp_noise[:,:,0])

¡En este caso obtendremos poca sal y mucha pimienta!

124 Dora Maria Ballesteros, Diego Renza

Figura 96. Imagen a color con ruido sal y pimienta, con th = 200.

Y sus histogramas, son:

	 (a)				 (b)			 (c)

Figura 97. Histograma por banda de la imagen a color – ruido sal y pimienta con th = 200.

Y finalmente adicionamos este ruido a la imagen, así:

noisy_img_sp = cv2.add(img, (sp_noise*0.5).astype(np.uint8))

cv2_imshow(noisy_img_sp)

Figura 98. Imagen a color con ruido sal y pimienta, th = 200 – villa de leyva.

¿En qué se diferencia esta imagen de la obtenida al adicionar el
ruido uniforme?

Rta: es mucho más notorio el efecto granular que en la imagen
con ruido uniforme.

125PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

6.6.	 FILTROS ESPACIALES
En esta sección entenderemos y aplicaremos el concepto de filtro espacial. Mate-
máticamente lo abordaremos en la Sección 6.7, pero por ahora, de forma concep-
tual y práctica realizaremos el filtrado de ruido en imágenes.

Lo primero que vamos a realizar es comparar el efecto que tiene en una imagen
los tres diferentes tipos de ruido que se explicaron en la Sección 6.5. La Figura 99
presenta un ejemplo.

	 (a)				 (b)			 (c)

Figura 99. Imagen de playa con tres tipos distintos de ruido: (a) sal y pimienta, (b) guassia-
no, (c) uniforme. Fuente: repositorio personal de los autores.

Pero, ¿cómo las diferenciamos?

•	 Empecemos con la imagen central, el efecto que tiene es de
“envejecida”, entonces esa imagen contiene ruido gaussiano.

•	 Ahora, comparemos las imágenes de los extremos, ambas
tienen un efecto “granular”. La imagen de la izquierda tiene
ruido sal y pimienta, por ser más evidente el efecto granular;
mientras que, la de la derecha tiene ruido uniforme.

A continuación, por medio de ejemplos se ilustrará el efecto que tienen diferentes
filtros espaciales en imágenes con diferentes tipos de ruido.

Empezaremos con la imagen que tienen ruido sal y pimienta, a la cual le aplicamos
un filtro tipo promedio. Este filtro 2D es similar al filtro de promedio 1D que cono-
cimos al inicio de este libro, pero en este caso es una matriz con todos sus valores
iguales a uno dividido en su tamaño (igual a filas x columnas). Por ejemplo, si el ta-
maño del filtro es (5 x 5), entonces cada posición del filtro tendrá el peso de 1∕25,
como se presenta en la siguiente Figura.

Figura 100. Filtro de promedio (5 x 5).

126 Dora Maria Ballesteros, Diego Renza

Una vez hemos leído la imagen en Python, aplicamos el filtro con el siguiente código:

f1_sp = cv2.blur(noisy_img_sp, (5,5), 0)
cv2_imshow(f1_sp)

Este filtro lo aplicamos a la imagen denominada noisy_img_sp, cuyo resultado es la
imagen f1_sp, la cual se presenta a continuación.

Figura 101. Imagen filtrada con filtro de promedio – ruido sal y pimienta.

El segundo tipo de filtro que vamos a evaluar es el filtro gausisano. En este caso, los
valores de la matriz varían entre sí, teniendo mayor peso la posición central del fil-
tro, y de menor peso las posiciones de los extremos. En este tipo de filtro los pesos
decrecen de forma gaussiana a medida que se alejan de la posición central, como se
presenta en la siguiente figura:

Figura 102. Filtro gaussiano (5 x 5). Se ha encerrado en un recuadro rojo la posición
central del filtro.

Para el filtro gausisano se utiliza el siguiente código en Python:

f2_sp = cv2.GaussianBlur(noisy_img_sp, (5,5), 0)
cv2_imshow(f2_sp)

Cuyo tamaño del filtro es también (5 x 5), y la salida en este caso se denomina f2_sp.
La imagen filtrada se presenta a continuación:

127PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 103. Imagen filtrada con filtro de gaussiano – ruido sal y pimienta.

Finalmente, filtraremos la imagen con un filtro de mediana (no confundir con el
filtro de promedio). Este tipo de filtro difiere a los dos anteriores en que no existe
una matriz de pesos del filtro. Se realiza un proceso de ordenamiento de los valores
de los píxeles de la imagen de una región de igual tamaño al del filtro, y se selecciona
el valor correspondiente a la posición central de los píxeles ordenados.

El código en Python es:

f3_sp = cv2.medianBlur(noisy_img_sp, 5)

cv2_imshow(f3_sp)

La imagen filtrada corresponde a f3_sp, como se presenta en la siguiente figura.

Figura 104. Imagen filtrada con filtro de mediana – ruido sal y pimienta.

La forma en que cada uno de estos filtros opera sobre la imagen, se explicará en
detalle en la Sección 6.7.

Por ahora, quiero que respondas la siguiente pregunta.

¿Cuál imagen filtrada consideras que presenta mejor calidad?,
es decir, ¿qué filtro seleccionarías para eliminar ruido tipo sal y
pimienta?
Rta: Para este tipo de ruido, el filtro de mediana es la mejor
opción.

128 Dora Maria Ballesteros, Diego Renza

En la segunda parte de esta sección, buscaremos un filtro para una imagen que
contiene ruido tipo gaussiano. Partiremos con el filtro de promedio (Figura 72), y
seguiremos con otro tipo de filtro denominado filtro bilateral (Figura 73).

Figura 105. Imagen filtrada con filtro de promedio – ruido gaussiano.

El filtro bilateral tiene en cuenta tres parámetros para calcular el valor de salida:
diámetro de la vecindad (d), varianza a nivel de color (σcolor), y varianza a nivel de
ubicación espacial (σspace).

•	 d es el diámetro de cada vecindad de píxeles. Si es negativo, se calcula a
partir de σspace.

•	 Cuando σcolor es alto, entonces, los colores más alejados dentro de la
vecindad se mezclan, obteniendo largas áreas de color casi-homogéneo.

•	 Cuando σspace es alto, entonces, los píxeles más alejados entre sí se mez-
clan (espacialmente hablando).

Este tipo de filtro es similar al filtro gaussiano, en términos de la cercanía en ubica-
ción espacial, pero incluye el concepto de cercanía de color también.

El siguiente es el código en Python para el filtro bilateral con d = 9, σcolor = 10,
σspace = 10
blur1 = cv2.bilateralFilter(noisy_img_sp,15,50,100)
cv2_imshow(blur1)

Figura 106. Imagen filtrada con filtro bilateral – ruido gaussiano.

129PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

¿Cuál imagen filtrada consideras que presenta mejor calidad?,
 es decir, ¿Qué filtro seleccionarías para eliminar ruido tipo gaus-
sinoa?
Rta: Para este tipo de ruido, el filtro bilateral es la mejor opción.

Puedes complementar la información de los filtros espaciales de esta sección en
https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html

6.7.	 CONVOLUCIÓN
En esta sección comprenderemos el concepto de “convolución” en imágenes. Estric-
tamente hablando, realmente realizaremos una operación de correlación entre un fil-
tro y una imagen, pero, teniendo en cuenta que, en la comunidad académica de visión
por computador y de aprendizaje profundo el nombre utilizado para esa operación
es el de convolución, utilizaremos ese nombre en este libro.

Lo primero a tener en cuenta es que la convolución es una operación que requiere
dos matrices, una de las cuales es la imagen, y la otra es el filtro. Típicamente, los
filtros tienen la misma cantidad de filas que de columnas, por ejemplo, de 3 x 3, pero
se podrían diseñar filtros con dimensiones que no sean iguales entre sí. Cada una
de las posiciones del filtro se denominan “pesos”. Conceptualmente, el filtro debe
tener una dimensión menor a la de la imagen para poder realizar un proceso de
“barrido” sobre ella.

Con un ejemplo ilustraremos el proceso:

Figura 107. Imagen y filtro para operación de convolución.

El primero paso consiste en adicionarle un borde a la imagen con valores de ceros,
ampliando su dimensión en 2 filas y dos columnas. Es decir, para nuestra Imagen de
ejemplo, la cual es de (5 x 5), al incluirle el borde quedará de (7 x 7).

Figura 108. Imagen de entrada con borde.

130 Dora Maria Ballesteros, Diego Renza

El propósito de adicionarle el borde a la Imagen de entrada es que el resultado de la
convolución (Imagen filtrada) contenga la misma cantidad de filas y de columnas que
de la Imagen de entrada. Cuando el tamaño del filtro es de 3 x 3, el borde es de 2
filas (una superior y una inferior) y dos columnas (una a la izquierda y una a la dere-
cha); cuando el filtro es de tamaño 5x5, el borde es de 4 filas (dos superiores y dos
inferiores) y 4 columnas (dos a la derecha y dos a la izquierda), y así sucesivamente.

Como segundo paso, el filtro se superpone sobre la Imagen de entrada, ubicándolo
en el extremo superior izquierdo. Posteriormente, se realiza la multiplicación de los
píxeles de la Imagen con los pesos del filtro. Si el filtro es de tamaño 3 x 3, entonces
se realizan 9 multiplicaciones. Finalmente, se suma el resultado de las multiplicacio-
nes, y el valor obtenido se asigna al primer pixel de la imagen (primera fila, primera
columna). Hay que tener en cuenta que, si el resultado de la operación anterior es
negativo, se escribe un cero en el pixel de salida correspondiente. Por otro lado, si
el resultado es superior a 255, se escribe 255.

El proceso se presenta a continuación:

Figura 109. Proceso de convolución: Paso 2. Se sombrea en amarillo el píxel central de la
imagen, para el paso correspondiente.

Como tercer paso, el filtro se desplaza una posición a la derecha, y se repite de nue-
vo el proceso de realizar las multiplicaciones, sumar su resultado y asignar al pixel
correspondiente de la imagen de salida (primera fila, segunda columna). El proceso
se presenta en la siguiente figura.

131PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 110. Proceso de convolución: paso 3. Se sombrea en amarillo el píxel central de la
imagen, para el paso correspondiente.

Como cuarto paso, y así sucesivamente, se desplaza de nuevo el filtro una posición
a la derecha, se realizan las correspondientes multiplicaciones, se suman sus valores
y se asigna al píxel de la imagen de salida que corresponda. Una vez el filtro se des-
plaza y llega al borde de la imagen, debe desplazarse de nuevo, empezando por la
segunda fila de la imagen, primera columna. El proceso de desplazamiento se realiza
de forma iterativa, hasta que se recorra por completo a la imagen de entrada. La
ubicación del píxel central para cada uno de los pasos del proceso de convolución y
la dirección del desplazamiento se presentan a continuación:

Figura 111. Pixel central en el proceso de convolución: barrido de la imagen de izquierda a
derecha, y de arriba abajo.

Para el presente ejemplo, el resultado de la convolución es:

132 Dora Maria Ballesteros, Diego Renza

Figura 112. Imagen filtrada.

Para saber cuál es el tamaño del borde a adicionarle a la imagen, utilizaremos las
siguientes ecuaciones:

		 W0 = WI - Wk + 1	 Ecuación 50

		 H0 = HI - Hk + 1		 Ecuación 51

Donde W1 , WK , W0, corresponden a la cantidad de columnas de la imagen de entra-
da con borde, del filtro y de la imagen filtrada (output), respectivamente. Mientras
que, HI , Hk, H0, corresponden a la cantidad de filas de la imagen de entrada con borde,
del filtro y de la imagen filtrada, respectivamente.

Entonces, si queremos que la imagen de salida tenga 5 x 5 y estamos utilizando un
filtro de 3 x 3, necesitamos que la imagen de entrada con borde sea de 7 x 7, tenien-
do en cuenta que al reemplazar los valores anteriores en la ecuación 50 o ecuación
51, tenemos que 5 = 7- 3+1. A la imagen de entrada sin borde (cuyas dimensiones
son iguales a la de la imagen de salida), debemos adicionarle 2 filas y 2 columnas, o,
en otras palabras, un borde de 1 rodeando a la imagen.

	

6.8.	 DETECCIÓN DE BORDES
En esta subsección abordaremos el tema de detección de bordes en imágenes. Lo
primero, es saber que, así como existen filtros cuyo propósito consiste en reducir el
ruido de una imagen (como los vistos en el Capítulo 6.6.), también tenemos filtros
cuyo objetivo es detectar el borde de una imagen. Mientras los primeros cumplen
que la sumatoria de sus pesos es igual a 1, en los segundos (detección de bordes) se
cumple que la sumatoria de sus pesos es igual a 0.

Adicionalmente, se pueden detectar bordes en una sola dirección o multi-dirección.
Dentro de los filtros más conocidos en la literatura tenemos Prewitt, Sobel y Lapla-
ciano. Y como algoritmo de detección de bordes (que incluye etapa de pre-procesa-
miento, filtrado y pos-procesamiento), tenemos el algoritmo Canny10.

Empecemos con el filtro Prewitt. Es una clase de detector de bordes aplicando la
diferencia entre píxeles de primer orden. Puede detectar bordes en el eje horizon-
10 Öztürk, Ş., & Akdemir, B. (2015). Comparison of edge detection algorithms for texture analysis on glass pro-
duction. Procedia-Social and Behavioral Sciences, 195, 2675-2682.

133PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

tal o en el eje vertical. Este filtro utiliza un tamaño de 3x3, donde la fila o columna
central son de valor 0, y las filas o columnas de los extremos son de valor 1 y -1. A
continuación, se presenta el filtro Prewitt para cada dirección de detección de borde.

Figura 113. Filtro Prewitt (3 x 3).

En el caso del filtro Sobel, también se detectan bordes en la dirección vertical y
horizontal, pero en este caso, se realiza un énfasis en el pixel central de las filas o
columnas cuyos pesos son distintos de cero, realizando una detección más fuerte
de los cambios de la imagen utilizando la primera derivada. En la siguiente figura se
presenta el filtro Sobel.

Figura 114. Filtro Sobel (3 x 3).

Por otro lado, el filtro Laplaciano se basa en la segunda derivada de la imagen (o dife-
rencia de segundo orden)11. Existen dos versiones del filtro Laplaciano, en la primera,
se computa la diferencia entre el pixel central y el promedio de sus vecinos directos
(arriba, abajo, izquierda, derecha), y en la segunda, se computa la diferencia entre el
pixel central y el promedio de todos sus vecinos (incluidas las esquinas). La versión
básica y la alternativa se presentan a continuación12.

Figura 115. Filtro Laplaciano (3 x 3).

Finalmente, tenemos el algoritmo o filtro Canny, el cual realiza varias etapas, las
cuales se resumen a continuación13y14:

	

11 https://www.sciencedirect.com/topics/engineering/laplacian-filter.	
12 Nixon, M. S., & Aguado, A. S. (2008). Low-level feature extraction (including edge detection). Feature Extrac-

tion and Image Processing. 3rd edi. Linacre House/Jordan Hill/Oxford: Elsevier, 115-79.
13 https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html
14 https://docs.opencv.org/3.4/da/d5c/tutorial_canny_detector.html

134 Dora Maria Ballesteros, Diego Renza

a. 	 Reducción de ruido: es una etapa de pre-procesamiento que consiste en
reducir el ruido presente en la imagen, por medio de un filtro Gaussiano
de tamaño 5 x 5.

b. 	 Identificación del gradiente de intensidad de la imagen: se filtra la imagen
obtenida en el paso anterior tanto con un filtro Sobel de detección de
bordes horizontales, como de detección de bordes verticales, obteniendo
Gx y Gy, respectivamente. A partir de las dos imágenes resultantes (una
por cada filtro Sobel), se calcula la imagen gradiente, tanto en magnitud
como en fase, aplicando las siguientes ecuaciones:

		 |G| = √Gx + Gy	 	 Ecuación 52

		 ∡ = tg-1 (Gy/ Gx
)	 	 Ecuación 53

La dirección del gradiente siempre es perpendicular a los bordes. Se aproxima a
uno de los cuatro posibles ángulos: horizontal, vertical, diagonal derecha, diagonal
izquierda.

c. 	 Supresión de los no máximos: esta etapa y la siguiente hacen parte del
pos-procesamiento. Consiste en remover los píxeles no deseados, que no
correspondan con el borde de la imagen. Si existen varios píxeles vecinos
en la dirección del gradiente que son potenciales bordes, se identifica
cuál de ellos es un máximo local, y ese es el píxel que se conversa para la
siguiente etapa del algoritmo.

d. 	 Umbralización con histéresis: en esta última fase se eliminan falsos bor-
des, a partir de un proceso de histéresis con dos umbrales. Se define un
umbral alto y un umbral bajo. Si el potencial borde supera al umbral alto,
entonces se considera un borde real. Si, por el contrario, es menor que
el umbral bajo, se descarta. Para los potenciales bordes cuya intensidad
se encuentra entre el umbral bajo y el umbral alto, la decisión de incluir-
se como un verdadero borde o de eliminarse depende de sus píxeles
vecinos. Si éstos son bordes, se considera también como borde; en caso
contrario, se descarta.

Una de las ventajas del algoritmo Canny es que detecta de forma simultánea bordes
en cuatro direcciones (vertical, horizontal, diagonal derecha y diagonal izquierda).
Adicionalmente, el borde detectado es delgado, gracias a sus etapas de pos-proce-
samiento posteriores al filtrado (supresión de los no-máximos y umbralización con
histéresis).

A continuación, aplicaremos los filtros anteriores a una imagen, para comparar las
diferencias de forma visual entre los bordes detectados en cada caso.

2 2

135PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

import cv2
import numpy as np
from google.colab.patches import cv2_imshow
img = cv2.imread(‘coctel.jpg’)
cv2_imshow(img)

prewitt_x = np.array([[1, 1, 1],
 [0, 0, 0],
 [-1, -1, -1]], dtype=np.float32)
print(prewitt_x)

fig1= cv2.filter2D(img, -1, prewitt_x, borderType=0)
cv2_imshow(fig1)

fig1g = cv2.cvtColor(fig1, cv2.COLOR_BGR2GRAY)
ret, fig1bw = cv2.threshold(fig1g,50,255,cv2.THRESH_BINARY)
cv2_imshow(255-fig1bw) # imagen filtrada con Prewitt_x

prewitt_y = np.array([[1, 0, -1],
 [1, 0, -1],
 [1, 0, -1]], dtype=np.float32)
print(prewitt_y)

fig2= cv2.filter2D(img, -1, prewitt_y, borderType=0)
cv2_imshow(fig2)

fig2g = cv2.cvtColor(fig2, cv2.COLOR_BGR2GRAY)
ret, fig2bw = cv2.threshold(fig2g,50,255,cv2.THRESH_BINARY)
cv2_imshow(255-fig2bw) # imagen filtrada con Prewitt_y

fig3bw = fig1bw + fig2bw
cv2_imshow(255-fig3bw) # imagen filtrada con Prewitt_x + Prewitt_y

sobel_x = np.array([[1, 2, 1],
 [0, 0, 0],
 [-1, -2, -1]], dtype=np.float32)
print(sobel_x)

fig4= cv2.filter2D(img, -1, sobel_x, borderType=0)
cv2_imshow(fig4)

fig4g = cv2.cvtColor(fig4, cv2.COLOR_BGR2GRAY)
ret, fig4bw = cv2.threshold(fig4g,50,255,cv2.THRESH_BINARY) # imagen
filtrada con Sobel_x
cv2_imshow(255-fig4bw)

sobel_y = np.array([[1, 0, -1],
 [2, 0, -2],
 [1, 0, -1]], dtype=np.float32)
print(sobel_y)

fig5= cv2.filter2D(img, -1, sobel_y, borderType=0)
cv2_imshow(fig5)

fig5g = cv2.cvtColor(fig5, cv2.COLOR_BGR2GRAY)
ret, fig5bw = cv2.threshold(fig5g,50,255,cv2.THRESH_BINARY) # imagen
filtrada con Prewitt_y
cv2_imshow(255-fig5bw)

136 Dora Maria Ballesteros, Diego Renza

fig6bw = fig4bw + fig5bw
cv2_imshow(255-fig6bw) # imagen filtrada con Sobel_x + Sobel_y

laplaciano1 = np.array([[0, -1, 0],
 [-1, 4, -1],
 [0, -1, 0]], dtype=np.float32)
print(laplaciano1)

fig7= cv2.filter2D(img, -1, laplaciano1, borderType=0)
cv2_imshow(fig7)

fig7g = cv2.cvtColor(fig7, cv2.COLOR_BGR2GRAY)
ret, fig7bw = cv2.threshold(fig7g,50,255,cv2.THRESH_BINARY)
cv2_imshow(255-fig7bw) # imagen filtrada con Laplaciano básico

laplaciano2 = np.array([[-1, -1v -1],
 [-1, 8, -1],
 [-1, -1, -1]], dtype=np.float32)
print(laplaciano2)

fig8= cv2.filter2D(img, -1, laplaciano2, borderType=0)
cv2_imshow(fig8)

fig8g = cv2.cvtColor(fig8, cv2.COLOR_BGR2GRAY)
ret, fig8bw = cv2.threshold(fig8g,50,255,cv2.THRESH_BINARY)
cv2_imshow(255-fig8bw) # imagen filtrada con Laplaciano alternativo

edges_canny = cv2.Canny(img,220,55)
cv2_imshow(255-edges_canny) # imagen filtrada con algoritmo Canny

Empezaremos analizando las imágenes filtradas con Prewitt. La obtenida con Prewitt_x
detecta bordes especialmente en la dirección horizontal, como la altura de la bebida
dentro de la copa, o el soporte horizontal del techo del restaurante. En el caso de
la imagen filtrada con Prewitt_y, no se detectan los bordes mencionados anterior-
mente, pero sí los bordes correspondientes a las columnas verticales de soporte del
techo. Finalmente, la imagen obtenida al sumar las dos anteriores es más completa
que sus antecesoras por separado, mostrando bordes en ambas direcciones.

En el caso de las imágenes obtenidas con Sobel, los resultados son similares a las
obtenidas con Prewitt. Sin embargo, se puede apreciar mayor demarcación en algu-
nos bordes.

Por otro lado, las imágenes obtenidas con el filtro Laplaciano (en sus dos versiones)
muestran el borde vertical de la copa, aunque es más notorio con el Laplaciano al-
ternativo. En ambos casos, las imágenes filtradas tienen bordes delgados, a diferencia
de sus antecesoras.

137PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 116. Imagen de entrada y detección de bordes con diferentes tipos de filtros.
Fuente: repositorio personal de los autores.

Finalmente, con el algoritmo Canny se tienen bordes delgados en todas las direc-
ciones, y aparecen bordes en zonas de la imagen que con los otros filtros no se
visualizaban, por ejemplo, las ondulaciones en el tejado.

138 Dora Maria Ballesteros, Diego Renza

6.9.	 TRANSFORMADA DFT Y DCT
En esta sección se abordan dos transformadas en imágenes, del dominio espacial al
dominio frecuencial. Específicamente, las correspondientes con la Transformada de
Fourier Discreta (DFT) y la Transformada Consenoidal Discreta (DCT).

6.9.1.	 DFT (Discrete Fourier Transform)

La DFT de una imagen se calcula a partir de la siguiente ecuación:

Teniendo en cuenta que,

Donde F(k,l) es la Transformada Discreta de Fourier, mientras que f(a,b) es la ima-
gen en el dominio espacial de tamaño (M,N). Es decir, el resultado de la DFT se
obtiene al multiplicar la imagen en el dominio espacial f(a,b) por la función base (que
en este caso es una señal exponencial compleja) y sumar el resultado para cada
pareja (k,l). Se resalta que tanto los valores (a,b) como los valores (k,l) son enteros.

Cuando se grafica la DFT de una imagen, no se puede relacionar fácilmente el resul-
tado obtenido con la imagen original. Típicamente, si existen cambios significativos
de dirección en la imagen, éstos se verán reflejados en la DFT (patrones de líneas
blancas). Si la imagen se invierte en el eje vertical (flip vertical), el efecto que se tiene
en su DFT es precisamente el de inversión. De forma similar, si la imagen si invierte
respecto al aje horizontal (flip horizontal), también se tendrá el efecto en su DFT de
inversión. En ambos casos, la inversión en la DFT es en relación con el eje vertical, de
tal forma que la DFT de la imagen invertida horizontal es igual a la DFT de la imagen
invertida vertical. Por otro lado, si a la imagen se le aplica doble inversión (una por
cada eje), su DFT es igual al de la imagen original (sin invertir).

La Figura 84 presenta un ejemplo de una imagen y su correspondiente DFT para
diferentes tipos de manipulaciones de la imagen. Se resalta que la DFT de la imagen
original es igual a la DFT de doble flip; mientras que, la DFT de flip vertical es igual
a la DFT de flip horizontal.

139PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 117. Imagen con su respectiva DFT.

Para calcular la DFT de una imagen en Python, utilizamos el siguiente código:

Paso 1) Cargue de librerías de lectura de la imagen

import numpy as np
import cv2
from google.colab.patches import cv2_imshow
url= “/content/oficina.png”
img = cv2.imread(url)

Paso 2) Convertir la imagen RGB a escala de grises y representarla en punto flo-
tante de 32 bits

img_gray=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2_imshow(img_gray)
img_float32 = np.float32(img_gray)

Paso 3) Calcular la DFT y visualizar el resultado en escala logarítmica

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_
shift[:,:,1]))
cv2_imshow(magnitude_spectrum)

140 Dora Maria Ballesteros, Diego Renza

Paso 4) Invertir la imagen en el eje vertical, calcular su DFT y graficar

flipVertical = cv2.flip(img_float32, 1)
cv2_imshow(flipVertical)
dft = cv2.dft(flipVertical, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_
shift[:,:,1]))
cv2_imshow(magnitude_spectrum)

Paso 5) Invertir la imagen en el eje horizontal, calcular su DFT y graficar

flipHorizontal = cv2.flip(img_float32, 0)
cv2_imshow(flipHorizontal)
dft = cv2.dft(flipHorizontal, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_
shift[:,:,1]))
cv2_imshow(magnitude_spectrum)

Paso 6) Doble inversión de la imagen (horizontal y vertical), calcular su DFT y gra-
ficar

flipBoth = cv2.flip(img_float32, -1)

cv2_imshow(flipBoth)
dft = cv2.dft(flipBoth, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_
shift[:,:,1]))
cv2_imshow(magnitude_spectrum)

6.9.2.	 DCT (Discrete Cosine Transform)

Esta transformada es muy útil para la compresión de imágenes, dado que gran parte
de la información de la imagen (la más significativa o representativa) se concentra
en pocos coeficientes espectrales. Hace parte del algoritmo de compresión de imá-
genes conocido como JPEG (Joint Photographic Experts Group).

A diferencia de la DFT, en este caso todos sus coeficientes son reales, calculados a
partir de la siguiente ecuación:

Donde C(k,l) corresponde a la DCT de la imagen f(a,b) de tamaño (M,N).

Típicamente, la DCT se calcula por bloques de la imagen, es decir, la imagen se divide
en zonas y a cada zona se la aplica la DCT. A continuación, se presenta un ejemplo
de la DCT para la imagen completa, y para diferentes tamaños de bloque.

141PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 118. DCT de la imagen de la Figura 84.a.

A diferencia de la DFT, sí es posible encontrar una relación directa entre la DCT y
la imagen de entrada, cuando el tamaño del bloque es pequeño. Por ejemplo, en la
Figura 118b, se alcanza a apreciar la pared y la persiana de la oficina; mientras que,
en la Figura 118c y Figura 118d, se visualizan líneas diagonales correspondientes a
la separación entre filas de ladrillos. Cuando el tamaño del bloque es de (32,32) o
superior, ya no se alcanzan a identificar los patrones de la imagen.

En este caso, el código de Python para obtener las gráficas anteriores, se presenta
a continuación:

Paso 1) Cargue de librerías de lectura de la imagen

import numpy as np
import cv2
from google.colab.patches import cv2_imshow
url= “/content/oficina.png”

img = cv2.imread(url)

142 Dora Maria Ballesteros, Diego Renza

Paso 2) Convertir la imagen RGB a escala de grises y representarla en punto flo-
tante de 32 bits

img_gray=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2_imshow(img_gray)
img_float32 = np.float32(img_gray)

Paso 3) Calcular la DCT y visualizar el resultado

dct = cv2.dct(img_float32)
cv2_imshow(dct)

Nota: en este caso no se necesitan re-ordenar los coeficientes, como sí se realizó
en el caso de la DFT. Adicionalmente, no se calcula la magnitud, dado que los valores
son reales. Tampoco, se grafica en escala logarítmica.

Paso 4) Definir el tamaño del block, calcular la cantidad de bloques y crear un DCT
de salida de valores cero.

B=2 #blocksize
img1 = img_float32
h= img1.shape[0]
w =img1.shape[1]
blocksV=np.int(h/B)
blocksH=np.int(w/B)
transformed=np.zeros([h, w])

Nota: este ejemplo está diseñado para bloques cuadrados. En este caso es de (2,2).

Paso 4) Aplicar la DCT por bloque y escribir el resultado en la zona de salida co-
rrespondiente.

for row in range(blocksV):
 for col in range(blocksH):
 currentblock = cv2.dct(img1[row*B:(row+1)*B,col*B:(col+1)*B])
 transformed[row*B:(row+1)*B,col*B:(col+1)*B]= currentblock
cv2_imshow((transformed))

6.9.3. 	 Comprensión de imágenes con la DCT

Como se había mencionado previamente, una de las aplicaciones de la DCT es en la
comprensión de imágenes, específicamente en el estándar JPEG. A continuación, se
explicará brevemente en que consiste ese método de comprensión.

Lo primero a resaltar es que JPEG es un método de comprensión con pérdida de
información (o lossy), que significa que parte de los datos se pierden en el proceso
de compresión y no se puede recuperar la imagen exactamente igual a la original; no
obstante, de forma visual, no se apreciarán diferencias significativas entre la imagen
original y su versión comprimida. Su principal ventaja sobre métodos de compresión
sin pérdida de información (o lossless) es que permite obtener una tasa de compre-

143PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

sión mayor, conocida como CR (compression rate), la cual corresponde a la relación
entre el tamaño de la imagen sin comprimir y el tamaño de la imagen comprimida.

Los principales bloques que hacen parte del método JPEG son: DCT, cuantización
inteligente, y codificación RL y Huffman. De forma muy resumida, los pasos son los
siguientes15:

a. 	 Aplicar DCT por bloques de la imagen, por ejemplo, de tamaño (8,8). El
resultado es otra imagen del mismo tamaño, cuyos datos corresponden a
coeficientes espectrales.

b.	 Aplicar cuantización a los coeficientes espectrales, dividiendo su valor
entre un factor de cuantización. De esta manera, se reduce la cantidad de
valores de salida (y la precisión de los datos). Adicionalmente, el proceso
es inteligente, dado que el factor de cuantización no es constante, sino
que, depende de la amplitud del coeficiente a cuantizar. A los coeficientes
que representan frecuencias mayores se les aplica un factor de cuantiza-
ción mayor.

c.	 A los coeficientes cuantizados se les aplica el método de codificación
run-length (RL). Este método aprovecha la gran cantidad de ceros con-
secutivos que se obtienen al combinar la DCT con la cuantización inte-
ligente. El barrido sobre los coeficientes cuantizados se realiza en forma
de zig-zag, empezando en el extremo superior izquierdo de la matriz
(DCT cuantizada). La longitud de la trama de salida es mucho menor a la
cantidad de coeficientes cuantizados del paso b.

d.	 Finalmente, se aplica codificación Huffman. La idea principal de este mé-
todo es representar los “símbolos” de mayor ocurrencia de la trama con
la menor cantidad de bits, mientras que, los de menor ocurrencia con
la mayor cantidad de bits. Entonces, los coeficientes espectrales cuanti-
zados y codificados con RL tendrán una representación binaria que es
significativamente menor a multiplicar el tamaño de la imagen por 8 bits
(en el caso de imágenes a escala de grises) o por 24 bits (en el caso de
imágenes a color de 3 canales). Los valores de compresión pueden llegar
a 100 veces.

15 https://cs.stanford.edu/people/eroberts/courses/soco/projects/data-compression/lossy/jpeg/index.htm

	_GoBack

