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CAPÍTULO 1. 

Del Mundo Análogo al Mundo Digital
En este capítulo encontrarás una breve introducción al procesamiento digital de 
señales, específicamente en relación con los conceptos de muestreo, cuantización y 
costo de almacenamiento/transmisión asociados al proceso de conversión análogo 
a digital (A/D).

Al finalizar el capítulo, deberás estar en capacidad de:
1.	 Explicar el concepto de muestreo de señales análogas/continuas.
2.	 Explicar el concepto de cuantización de muestras.
3.	 Seleccionar adecuadamente los parámetros de frecuencia de mues	
	 treo y bits de resolución en la conversión A/D, de acuerdo con el 	
	 espectro de la señal y su comportamiento en el dominio del tiempo.
4.	 Explicar el costo de almacenamiento/transmisión del proceso de 	
	 conversión A/D de señales continuas/análogas. 
5.	 Explicar el efecto en frecuencia de muestrear una señal análoga/		
	 continua.

El Procesamiento Digital de Señales es un conjunto de técnicas y métodos que per-
miten manipular una señal para obtener información de ella (patrones), o para mo-
dificarla o transformarla. Por ejemplo, la señal de voz es una señal análoga en tiem-
po continuo que contiene información de entonación, género del hablante, idioma, 
entre otros, que puede ser utilizada para identificar qué persona está pronunciando 
un mensaje o discurso. En este caso, el procesamiento digital de la señal se enfoca 
en identificar patrones de voz que permitan caracterizar al hablante, y compararlo 
con una base de datos previamente almacenada en el sistema. También, hoy en día 
encontramos dispositivos celulares que utilizan reconocimiento facial como medio 
para desbloquear el acceso al sistema, sustituyendo o reemplazando la opción clá-
sica de clave numérica; por lo cual, el celular debe identificar “características faciales” 
que permitan corroborar si el rostro que está frente a la cámara es el autorizado 
para desbloquearlo.

Pero ¿cómo pasamos del mundo análogo/continuo al mundo digital/discreto? Gran 
parte de las señales que encontramos en la naturaleza son análogas (infinitos valo-
res de amplitudes posibles) que se van actualizando a lo largo de la variable inde-
pendiente, que típicamente es el tiempo (con infinitos valores de tiempo posibles), 
que deben ser transformadas antes de poder ser utilizadas por un sistema digital. 
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El proceso se conoce como conversión análogo-digital (ó A/D), el cual consiste en 
seleccionar un número finito de valores de tiempo en los que representaremos sus 
amplitudes en un número finito de bits. De tal forma que tanto la variable indepen-
diente (tiempo), como la variable dependiente (amplitud de la señal) son discretiza-
dos. En la Figura 1 encontrarás una gráfica ilustrativa de la conversión A/D.
 

Figura 1. Diagrama general de un proceso de conversión A/D.

En las siguientes subsecciones encontrarás en detalle los conceptos de muestreo 
y cuantización, su costo de almacenamiento y transmisión, así como el efecto del 
muestreo en el espectro de la señal. 

1.1.  MUESTREO DE LA SEÑAL ANÁLOGA/CONTINUA

En la primera parte del proceso de conversión A/D, se selecciona un número de 
muestras por segundo de la señal, conocido como frecuencia de muestreo (fs). De 
esta forma, si, por ejemplo, la señal tiene una duración de 10 segundos y la frecuen-
cia de muestreo es de 8 kHz, entonces, la cantidad total de muestras es de 80.000. 
El valor de fs, en el caso de muestreo equi-espaciado, debe satisfacer el criterio de 

Nyquist, el cual establece que:

	 		  fs  ≥ 2 * fmax		  Ecuación 1

Donde fmax corresponde a la frecuencia máxima de la señal de tiempo continuo. Por 
ejemplo, si el espectro de nuestra señal tiene el comportamiento de la Figura 2, en-
tonces la frecuencia de Nyquist es de 8 kHz. En otras palabras, una fs  = 8 kHz solo 

es adecuada para señales cuya  fmax  = 4 kHz.



15PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 2. Ejemplo de espectro de señal de voz, fs  = 8 kHz.

La lectura y procesamiento de un archivo de voz (ej. en formato wav), está soportado 
en muchos lenguajes de programación. Para el caso del lenguaje Python, podemos 
utilizar la librería Librosa con el fin de cargar la señal en el entorno de ejecución (por 
ejemplo, en un Jupyter notebook como CoLaboratory). Esta librería permitirá también 
visualizar la señal o conocer la fs con la que fue muestreada. 

Específicamente, en lenguaje Python escribimos el siguiente código para la visualiza-
ción de la señal en el dominio del tiempo:

import librosa
import librosa.display
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import IPython
from scipy.io import wavfile
from scipy.fft import fftshift

plt.rcParams[“figure.figsize”] = (14,5)
filename = ‘audio.wav’

# Se debe asignar sr=None para que se conserve la fs original del audio. 
# En caso contrario, se re-muestrea a 22050 Hz.  
audio, fs = librosa.load(filename, sr=None)
librosa.display.waveplot(audio, sr=fs);

print(“frecuencia de muestreo de la señal:”, fs, “Hz”)
print(“cantidad de muestras de la señal:”, len(audio))
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Obteniendo como resultado: 

frecuencia de muestreo de la señal: 8000 Hz
cantidad de muestras de la señal: 24000

 

Figura 3. Ejemplo de señal de voz en el dominio del tiempo.

De acuerdo con la Figura 3, esta señal de voz tiene una duración de 3 segundos, y 
su amplitud se encuentra comprendida entre [-0.45 0.45], aproximadamente. Adi-
cionalmente, en 1.7 segundos, se percibe un incremento significativo de la amplitud 
de la señal (tanto positiva como negativa) en relación con los demás valores de 
amplitud a lo largo de los 3 segundos.  Teniendo en cuenta que la fs = 8 kHz, el total 
de muestras de la señal es de 24K.

Si queremos que el audio se ajuste al máximo volumen posible, podemos escalar su 
amplitud, así:

norm = max(np.absolute([min(audio), max(audio)]))
audio= audio /norm
librosa.display.waveplot(audio, sr=fs);

 

Figura 4. Ejemplo de señal de voz en el dominio del tiempo, con normalización de amplitud.
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Esta nueva señal tiene una amplitud mayor a la señal original, y ahora se encuentra 
en el rango de [-1 1]. Adicionalmente, podemos reproducir el audio, con el siguiente 
código:

IPython.display.Audio(audio, rate=fs)

El cual genera un botón de reproducción

Posteriormente, es posible graficar el espectro de la señal con el siguiente código 
en Python:

import scipy.fftpack as  fourier

L=len(audio)
transformada = fourier.fft(audio)                       
magnitud = abs(transformada)                             
magnitud_lateral = magnitud[0:L//2]                        
fase = np.angle(transformada)
frecuencias = fs*np.arange(0, L//2)/L

plt.plot(frecuencias, magnitud_lateral)
plt.xlabel(‘Frecuencia (Hz)’, fontsize=’10’)
plt.ylabel(‘Amplitud FFT’, fontsize=’10’)
plt.show()

 

Figura 5. Espectro de la señal de voz de la Figura 4.

Pero ¿cómo sabemos si la frecuencia de muestreo de la señal en el proceso de con-
versión A/D fue adecuada? La respuesta la obtenemos en su espectro. Por ejemplo, 
para nuestro caso, las amplitudes de la FFT para frecuencias mayores de 2 kHz son 
muy cercanas a cero y distan significativamente de las amplitudes en frecuencias 
inferiores a 1 kHz.  De tal forma que, la mayor parte de la energía de la señal se 
encuentra en las frecuencias menores a 1kHz, y entonces fs  = 8 kHz es adecuada. Si 
por el contrario, en frecuencias cercanas a 4 kHz las amplitudes de la FFT fuesen 
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comparativamente altas en relación con frecuencias menores, muy posiblemente la 
fs seleccionada sería incorrecta, y tendríamos que escoger un valor mayor. 

Supongamos que nuestra señal corresponde a un fragmento de música de un con-
cierto de violín (Figura 6), cuyo espectro se presenta en la Figura 7.
 

Figura 6. Ejemplo de señal de música en el dominio del tiempo.

A diferencia de la señal de voz, las amplitudes de la FFT cercanas a 4 kHz no son 
significativamente pequeñas en relación con las amplitudes en frecuencias menores 
a 1 kHz, por lo que utilizar una fs > 8 kHz  es necesario, por ejemplo fs =  22 kHz.
 

Figura 7. Espectro de la señal de música de la Figura 6.

Hasta aquí, hemos comprendido que no todas las señales necesitan la misma fre-
cuencia de muestreo, y que a medida que la frecuencia máxima de la señal conti-
nua es mayor, debemos muestrear la señal con un número mayor de muestras por 
segundo. ¿Pero qué ocurriría si seleccionamos una fs no adecuada, es decir que no 
cumpla el criterio de Nyquist? La respuesta se ilustrará a través de ejemplos.

Supongamos entonces que la señal de voz de la Figura 4 la re-muestreamos a 1 kHz, 
es decir, solamente conservaremos las componentes de frecuencias de los 0 Hz 
hasta los 500 Hz, como se presenta en la Figura 8.
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Figura 8. Espectro de la señal de voz de la Figura 4, re-muestreada a 1 kHz.

Esta nueva señal tiene el efecto de escucharse la voz ahogada, dado que, no cuenta 
con componentes de frecuencias altas, relacionadas con el detalle de la señal. Este 
fenómeno, el cual ocurre cuando la frecuencia de muestreo no es al menos el doble 
de la frecuencia máxima de la señal, se conoce como aliasing.

Finalmente, es necesario aclarar que, aunque en un dispositivo digital como un PC 
podemos graficar una señal con apariencia de continua/análoga, estas señales son en 
realidad discretas/digitales. Internamente, se realiza un proceso de interpolación que 
permite unir las amplitudes discretas para que luzcan como una señal que varía para 
valores infinitos de tiempo.

Específicamente en lenguaje Python, se puede utilizar la librería Matplotlib para gra-
ficar señales uni-dimensionales (1D), con dos opciones de visualización: plot para 
tiempo continuo, stem para tiempo discreto. A diferencia de la librería de Librosa, es 
necesario definir un vector de tiempos previo a la visualización.

A continuación, se presenta el código en Python para las dos formas de visualización.

t = np.arange(0,len(audio)/fs,1/fs)
plt.rcParams[“figure.figsize”] = (14,8)
ax = plt.subplot(2, 1, 1)
plt.plot(t[8000:8100], audio[8000:8100])
plt.title(“Gráfica señal de voz utilizando plt.plot”)
ax = plt.subplot(2, 1, 2)
plt.stem(audio[8000:8100])

plt.title(“Gráfica señal de voz utilizando plt.stem”)
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Figura 9. Ejemplo de señal de voz con dos formas distintas de visualización.

En la Figura 9a se graficaron 0.0125 segundos de la señal de voz de la Figura 4, com-
prendidos en el rango [1 1.0125) segundos, que corresponden a la interpolación de 
100 muestras de la señal de voz en el rango [8000 8100). Aunque en este libro utili-
cemos en algunas ocasiones plot y en otras stem, el estudiante deberá siempre tener 
en cuenta que se están graficando señales discretas en el tiempo, con un número 
finito de bits de resolución.

1.2.	 CUANTIZACIÓN DE LAS MUESTRAS

Una vez se ha muestreado la señal, el siguiente paso (el cual se realiza casi de forma 
paralela en el conversor A/D) consiste en representar mediante bits a la amplitud de 
la señal discreta. Existen diversos formatos de representación de datos, por ejem-
plo, magnitud, magnitud + signo, punto flotante, entre otros. Supongamos que nuestro 
conversor trabaja con el formato magnitud + signo, donde el MSB (Most Significant Bit: 
bit más significativo) corresponde al signo del dato, y los restantes bits a la magnitud.  
De tal forma que, si el MSB es igual a 1, entonces la amplitud es negativa; en caso 
contrario, la amplitud es positiva. 

Ahora bien, los conversores permiten trabajar con diferente número de bits de con-
versión por muestra, lo que se conoce como bits de resolución. A mayor cantidad 
de bits, la señal digital se escuchará más fiel a la señal análoga. Típicamente, podemos 
encontrar resoluciones de 8, 16, 24 y 32 bits. 

Supongamos que nuestro audio que inicialmente se encontraba en el rango [-1   1]  
lo cuantizamos con 4 bits en formato magnitud + signo. Entonces, tenemos 3 bits 
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para la magnitud de la señal y 1 bit para el signo, de tal forma que cada incremento 
de amplitud de 1⁄23 tendrá un nuevo código digital. Es decir, a todas las amplitudes 
del audio en el rango [0   1⁄23) se les asigna el código 0000, a todas las amplitudes 
en el rango [1⁄23    2/23) se les asigna el código 0001, y así sucesivamente. La Tabla 
1 presenta la asignación de códigos por rangos de amplitud de la señal.

Tabla 1. Ejemplo de cuantización con 4 bits con formato magnitud + signo, para una señal 
en el rango [-1   1].

De acuerdo con la Tabla 1, dos amplitudes que solo se diferencien en el signo (ej. 
-0.6 y 0.6) tendrán el mismo código excepto en su MSB (en este caso, 1100 y 0100).  
A medida que aumenta el número de bits de resolución, el rango de amplitudes que 
comparte el mismo código se va haciendo más pequeño. Por ejemplo, si la señal con 
rango análogo de [-1   1] la cuantizamos a 16 bits (15 de magnitud y 1 de signo), cada 
1⁄215  (es decir 30.5*10-6) tendrá un código digital distinto.

Para ilustrar el impacto de la cantidad de bits de resolución, utilicemos las mismas 
señales discretas de la sección anterior, la señal de voz y la de audio, para ilustrar el 
impacto de los bits de resolución en la calidad de la señal digital/discreta. El archivo 
audio.wav tiene 16 bits de resolución. Vamos a re-cuantizarlo a 8 bits (Figura 10), con 
el siguiente código en Python:

bits = 8
audio_8bit = (audio* 2**bits).astype(int)
audio_8bit = audio_8bit / 2**bits
librosa.display.waveplot(audio_8bit, sr=fs)

Figura 10. Ejemplo de señal de voz cuantizada a 8-bits.
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y reproducimos la señal, así:

IPython.display.Audio(audio_8bit, rate=fs)

El efecto es que escuchamos ruido de fondo en la señal, pero el mensaje seguirá sien-
do legible.  Ahora, disminuiremos la resolución a 6 bits (Figura 11), y compararemos 
los resultados con los obtenidos previamente.

bits = 6
audio_6bit = (audio* 2**bits).astype(int)
audio_6bit = audio_6bit / 2**bits
librosa.display.waveplot(audio_6bit, sr=fs);

IPython.display.Audio(audio_6bit, rate=fs)

Figura 11. Ejemplo de señal de voz cuantizada a 6-bits.

En el audio re-cuantizado a 6 bits se escuchan saltos de amplitud en el mensaje. La 
calidad del audio en términos de legibilidad ha disminuido. 

Finalmente, se re-cuantiza el audio a 3 bits (Figura 12). A diferencia de los casos an-
teriores, la señal re-cuantizada no tiene contenido inteligible (es decir, no se entien-
de lo que se dice), dado que la amplitud dista significativamente de la señal original 
cuantizada a 16 bits (Figura 4).

bits = 3
audio_3bit = (audio* 2**bits).astype(int)
audio_3bit = audio_3bit / 2**bits
librosa.display.waveplot(audio_3bit, sr=fs)
IPython.display.Audio(audio_3bit, rate=fs)
 

Figura 12. Ejemplo de señal de voz cuantizada a 3-bits.
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Posteriormente, seleccionamos el archivo music.wav el cual tiene también 16 bits de 
resolución. Aplicaremos dos re-cuantizaciones: de 8 bits y de 3 bits.

# Re-cuantización a 8 bits del registro de música
bits = 8
music_8bit = (music* 2**bits).astype(int)
music_8bit = music_8bit / 2**bits
fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
librosa.display.waveplot(music_8bit, sr=fs2, ax=ax[0])
ax[0].set(title=’Música re-cuantizada a 8 bits’)
ax[0].label_outer()

# Re-cuantización a 3 bits del registro de música
bits = 3
music_3bit = (music* 2**bits).astype(int)
music_3bit = music_3bit / 2**bits
librosa.display.waveplot(music_3bit, sr=fs2, ax=ax[1])
ax[1].set(title=’Música re-cuantizada a 3 bits’)
ax[1].label_outer()

Con la re-cuantización a 8 bits (Figura 13a), la señal es muy similar a la original cuan-
tizada a 16 bits (Figura 6); mientas que la re-cuantizada a 3 bits (Figura 13b), tanto 
gráficamente como de forma auditiva, se aleja de la señal original.

Figura 13. Ejemplo del efecto de re-cuantización de la señal de música a 8 bits y a 3 bits.

Por lo anterior, es evidente que la selección de la cantidad de bits de resolución jue-
ga un papel muy importante en la calidad de la señal discreta/digital. En la siguiente 
subsección abordaremos las implicaciones que tiene a nivel de costo de almacena-
miento y de transmisión el valor de bits de resolución seleccionado.
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1.3.	 COSTO DE ALMACENAMIENTO/TRANSMISIÓN 
EN TÉRMINOS DE LA FRECUENCIA DE MUES-
TREO Y NÚMERO DE BITS DE RESOLUCIÓN

Hasta aquí hemos evidenciado la importancia de seleccionar adecuadamente el va-
lor de frecuencia de muestreo y de bits de resolución cuando vamos a convertir una 
señal continua/análoga en discreta/digital. Recordemos que la notación “continua” y 
“discreta” hace alusión a la variable independiente (típicamente el tiempo), mientras 
que “análoga” y “digital” corresponde con la amplitud de la señal (ej. voltios., amperes, 
entre otros).  Si la cantidad de valores en un rango de tiempo es infinita, la señal es 
continua; en caso contrario, es discreta. De forma similar, si la cantidad de valores 
diferentes de amplitud en un rango es infinita, la señal es análoga; en caso contrario, 
es digital.

Aunque podríamos pensar que tanto la f_s seleccionada como los bits de resolución 
deberían ser los más altos posibles en beneficio de la calidad de la señal (similitud 
con la señal continua/análoga original), debemos tener presente que existe un costo 
asociado con el almacenamiento y la transmisión de la señal.  Este concepto lo ex-
plicaremos a través de dos casos.

Caso 1: 
Supongamos que se ha digitalizado una señal de voz de 2.777 horas (exacta-
mente 10.000 segundos), con fs = 24  kHz y 32 bits de resolución. Entonces, 
la cantidad de bits total de la señal digital/discreta es:

cantidad = Time* fs *res  [bits]			   Ecuación 2

Donde Time es la duración de la señal en segundos, fs es la frecuencia de 
muestreo, y res es la cantidad de bits de resolución. 

De tal forma que, cantidad = 10.000 *  24.000 * 32 = 7.68 Gb, que corres-
ponde a 960 MB.

Caso 2: 
La misma señal de voz del Caso 1 se digitalizó con fs = 8  kHz y 16 bits de 
resolución. Entonces, cantidad = 10.000 *  8.000 *16 = 1.28 Gb, que equi-
vale a 160 MB.

Supongamos ahora que nuestro plan de Wi-Fi es de 10 MBps (donde Bps: bytes por 
segundo) y queremos descargar la señal de voz que se encuentra en dos páginas de 
internet. La primera página utilizó los parámetros de conversión del Caso 1; mien-
tras que la segunda página utilizó los parámetros de conversión del Caso 2.  Enton-



25PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

ces, la descarga del archivo en la primera página de internet tomaría 96 segundos (1 
minuto y 36 segundos), mientras que, en la segunda página de internet tomaría 16 
segundos. Es evidente que preferiríamos descargar el archivo de la segunda página 
de internet porque nos tomaría la sexta parte en relación con el tiempo de descarga 
en la primera página.

Pero ¿la calidad de la señal discreta/digital obtenida con los parámetros de conver-
sión del Caso 2 es lo suficientemente buena? La respuesta es sí, dado que, tanto la fs 
como la resolución son adecuados para señales de voz. No es necesario discretizar 
una señal que solo contiene voz con una fs  = 24 kHz, dado que, como vimos pre-
viamente, la mayor parte de la energía de la señal se encuentra en las frecuencias 
inferiores a 1 kHz. Adicionalmente, la resolución de 16 bits permite cambios en el 
código digital para valores de amplitud muy pequeños.

Como conclusión, los valores de  f_s y bits de resolución no deberían ser tan 
pequeños que nos degraden la calidad de la señal, pero tampoco excesivamente 
altos, que impliquen altos costos de almacenamiento y/o transmisión de la señal.

1.4.	 EFECTO EN EL ESPECTRO DE MUESTREAR UNA 
SEÑAL DE TIEMPO CONTINUO

En el canal de YouTube1 podrás encontrar el video titulado “Espectro señales discre-
tizadas” en el que se explica paso a paso el efecto de muestrear una señal continua 
en términos de su espectro.  Este concepto lo explicaré de forma matemática a 
continuación.

Primero, partimos de una señal continua en el dominio del tiempo, la cual posee un 
número infinito de valores de tiempo en el rango de [ti    tf], donde ti es el tiempo 
inicial de la señal, y tf  es el tiempo final. Por ejemplo, supongamos que ti  = 0 s, mien-
tras que tf   = 10 s. Esa señal la vamos a denominar x(t) y su espectro X(f).  

Es decir,

	 	         FT
		  x(t) → X(f) 	 	 Ecuación 3

Supongamos que el espectro de la señal x(t) está comprendido en el rango [0   4]kHz, 
por lo que decidimos muestrear la señal con fs  = 8 kHz. La forma de hacerlo es multipli-
car x(t) con un tren de impulsos periódico de amplitud igual a 1 y T = 1 ⁄ fs, que denomi-
naremos m(t). En nuestro caso, el periodo del tren de impulsos es T=1⁄8kHz=125 μs. El 
espectro de m(t) lo denominaremos M(f), el cual corresponde a otro tren de impulsos 
cuya amplitud es 1⁄T y espaciado cada fs . 
1  https://www.youtube.com/channel/UCrasAFtm_6B9vOIShGtl1ig
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Es decir,

  		               FT
		  m(t) → FT M(f) 		  Ecuación 4

El efecto en el dominio del tiempo de multiplicar x(t) con m(t), es que la señal 
continua queda muestreada cada T segundos, obteniendo una señal discreta que de-
nominaremos x[n]. En el dominio de la frecuencia, el efecto es la convolución entre 
los espectros de X(f) y M(f), es decir, se generan “réplicas” del espectro X(f) cada 
fs Hz. A este espectro resultante lo denominaremos Xm (f), así:

		         DFT

	    	 x[n] → Xm (f)		     Ecuación 5

El efecto de réplicas en el espectro se explica recordando que cuando se convo-
luciona una señal por un impulso desplazado en k, el resultado es la misma señal 
desplazada en k. De tal forma que la convolución de X(f)  con el impulso ubicado en 
el origen es el mismo espectro X(f); la convolución de X(f) con el impulso ubicado 
en fs  es X(f - fs); la convolución de X(f) con el impulso ubicado en 2 fs es X(f - 2 fs ); y 
así sucesivamente. Teniendo en cuenta que la señal m(t) contiene infinitos impulsos 
separados fs, entonces, la cantidad de réplicas de X(f) es también infinita y están 
separadas fs,, Adicionalmente, su amplitud se verá afectada por el valor 1⁄T.

Hasta aquí, vamos a resumir lo explicado anteriormente:

Tabla 2. Muestreo con tren de impulsos de duración infinita y su efecto en frecuencia.

Ahora bien, teniendo en cuenta que en la práctica el tren de impulsos es de duración 
finita, podemos multiplicar m(t) por una ventana w[n], para limitar la duración del tren 
de impulsos en el rango [ti     tf]. Entonces, en el dominio de la frecuencia, el espectro 
del tren de impulsos, M(f), se convoluciona con el espectro de la ventana, W(f). 
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Dado que existen diversos tipos de ventana y que cada una tiene un espectro dife-
rente, se expresará de forma general, tanto la señal en el dominio del tiempo, como 
en el dominio de la frecuencia, así:
			          DFT		
			   w[n] → W(f)		  Ecuación 6

En la Tabla 3 se presenta el efecto de muestreo de la señal x(t) con el tren de impul-
sos de duración finita. Al final de todo este proceso, el espectro de la señal x(t) no 
solamente se replica, sino que se distorsiona ligeramente, debido a la convolución 
en el dominio de la frecuencia entre (X(f) ⊗ M(f)) con W(f).

Antes de transmitir la señal muestreada, se aplica un filtro pasa-bajo, para obtener 
únicamente la réplica ubicada en el origen.

Tabla 3. Muestreo con tren de impulsos de duración finita y su efecto en frecuencia.
 




