PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 51 |

CAPITULO 4.

Merodos de diseno de filrros FIR

En este cuarto capitulo del libro vamos a conocer y a aplicar varios métodos o téc-
nicas de diseno de filtros FIR. Partiremos de los filtros ideales y comprenderemos
la razéon por la cual no son realizables. Posteriormente, conoceremos el método
de muestreo en frecuencia, y finalizaremos con el método de ventaneo. De forma
simultanea abordaremos esta tematica desde el punto de vista tedrico, y a nivel de
simulacion el lenguaje de programacion Python.

Al finalizar el capitulo, deberas estar en capacidad de:

I Explicar la razon por la cual los filtros ideales no son realizables.

2. Explicar el fenémeno de Gibbs a partir del truncamiento de la respuesta a
impulso de un filtro ideal.

3. Disenar filtros (pasa-bajos, pasa-altos, pasa-banda) aplicando el método de
muestreo en frecuencia, apoyandose en Python para los calculos.

4. Disenar filtros (pasa-bajos, pasa-altos, pasa-banda) aplicando el método de
ventaneo, apoyandose en Python para los calculos.

5. Explicar el comportamiento de los ceros en filtros FIR disefiados por los
métodos de promedio y ventaneo.

4.1. FILTROS ANALOGOS IDEALES

Para abordar el concepto de filtros ideales, debemos primero repasar la clasifica-
cion de los filtros respecto a la respuesta en frecuencia. Los filtros se clasifican en:
pasa-bajos, pasa-altos, pasa-banda y rechaza-banda.

En el caso de los filtros pasa-bajos, la banda de paso inicia en los 0 [Hz] y termina
en la frecuencia de corte del filtro, denominada f.. O de forma equivalente, inicia
en 0 [radbeg] y termina en W, para Wc= 2nfc. A partir de la frecuencia de corte
inicia la banda de rechazo, en la cual el filtro idealmente atenta por completo esas
frecuencias de la senal de entrada. Por lo tanto, en el filtro ideal la ganancia (G) en
la banda de paso es constante (tipicamente G = 1),y en la banda de rechazo es cero.
En la frecuencia de corte se tiene una caida con pendiente infinita.

| 52| Dora Maria Ballesteros, Diego Renza

La respuesta en frecuencia del filtro pasa-bajo ideal se presenta en la Figura 27.

Figura 27. Respuesta en frecuencia de un filtro andlogo pasa-bajo ideal.

En el caso del filtro pasa-alto ideal, la banda de rechazo inicia en 0 [Hz] y termina
en la frecuencia de corte. La banda de paso corresponde a las frecuencias mayores a
la fc.Tanto el filtro pasa-alto como el filtro pasa-bajo, tienen una sola banda de paso
y una sola banda de rechazo. La Figura 28 presenta la respuesta en frecuencia del

filtro pasa-altos ideal.

Figura 28. Respuesta en frecuencia de un filtro analogo pasa-alto ideal.

Los otros dos tipos de filtro son pasa-banda y rechaza-banda. El primero, tiene una
banda de paso y dos bandas de rechazo (Figura 29). El segundo, tiene dos bandas de
paso y una banda de rechazo (Figura 30). En ambos casos, se tienen dos frecuencias

de corte, denominadas fei y fe.

Figura 29. Respuesta en frecuencia de un filtro analogo pasa-banda ideal.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 53|

Figura 30. Respuesta en frecuencia de un filtro analogo rechaza-banda ideal.

4.2. FILTROS DIGITALES IDEALES

En el caso de los filtros digitales, la respuesta en frecuencia bilateral la expresamos
en el rango [-m)] con unidades [rad/muestra], o en el rango [-1 1] con unidades
[ciclo/muestra].

El filtro digital pasa-bajo ideal se presenta en la Figura 34.

Figura 31.Respuesta en frecuencia del filtro digital pasa-bajo ideal, valores en [rad/muestra].

Matematicamente, se define como:
1 |o|<wc

H(el®) = con periodicidad de 2w Ecuacion 24
0 e.o.c.(en otro caso)

Las caracteristicas del filtro, son:
* Banda de paso completamente plana.
¢ Atenuacion infinita en la banda de rechazo.

* Fase cero (sin retraso).

| 54| Dora Maria Ballesteros, Diego Renza

En el dominio del tiempo discreto, la respuesta al impulso del filtro (es decir, la
Transformada de Fourier Discreta Inversa: IDTFT), es igual a:

h[n]

La cual corresponde a una senal de duracién infinita por ambos lados del eje n, co-
nocida como senal sinc.

_ sin(wcn)
©mn

Ecuacion 25

Revisemos ahora la estabilidad de este filtro pasa-bajos ideal. Recordando la defini-
cion de estabilidad presentada anteriormente en este libro (Capitulo 3.5), se tiene
que el filtro es estable si y solo si:

Zn|h[n]| <L para L<«

Entonces, el filtro pasa-bajos ideal no es estable, independiente del valor de wc que
se seleccione, dado que la sumatoria de la magnitud de su respuesta al impulso no
es finita.

A partir del concepto anterior, el primer método de diseno de filtros FIR correspon-
de al truncamiento de su respuesta al impulso. De tal forma que, partiendo de un
filtro FIR ideal se selecciona un nimero finito de impulsos (a ambos lados del eje n
) para convertirlo en un filtro estable.

4.3. TRUNCAMIENTO DE LA RESPUESTA AL IMPULSO

Este método consiste en limitar la cantidad de muestras de la respuesta al impulso
del filtro. Se parte de un h[n] que tiene infinitos impulsos con amplitud distinta a
cero, y se llega a un h[n] que tiene un nimero de impulsos finitos, simétrico res-
pecto al origen.

Cuando se aplica truncamiento a h[n], se hace visible el fendmeno de Gibbs en la
respuesta en frecuencia del filtro, que consiste en la aparicion de pequehas on-
dulaciones tanto en la banda de paso como en la banda de rechazo del filtro. La
diferencia (error) entre la maxima amplitud del rizado en relacién con la amplitud
plana del filtro ideal es del 9%, aproximadamente. Este error aparecera en H(e*),
independiente de la cantidad de muestras seleccionadas al truncar h[n].

Por ejemplo, supongamos que la senal sinc en el dominio del tiempo discreto de
duracién infinita la truncamos en el rango -5 < n < 5, cuyo espectro se presenta en
la Figura 32.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 55|

Figura 32. Espectro por truncamiento de h[n] con -5sn<5.

Si la misma senal sinc la truncamos, pero ahora en el rango -20 < n < 20, obtendre-
mos el espectro de la Figura 33.

Figura 33. Espectro por truncamiento de h[n] con -20=n<20.

Como se aprecia en las figuras anteriores, cuando se realiza truncamiento de h[n] se
tiene un efecto de “rizado”, tanto en la banda de paso, como en la banda de rechazo.
Este rizado se va “compactando” a medida que la cantidad de muestras selecciona-
das de h[n] aumenta, pero no desaparece.

4.4. MUESTREO EN FRECUENCIA

Este método de diseno de filtros FIR consiste en muestrear la respuesta en frecuen-
cia de un filtro analogo ideal, y aplicar un conjunto de ecuaciones que nos permiten
obtener la respuesta al impulso del filtro digital. Existen dos grupos de ecuaciones

| 56| Dora Maria Ballesteros, Diego Renza

dependiendo de si el filtro tiene una muestra en w = 0 (es decir, « = 0) o no (es
decir, @ = 1) /2). En el primer caso, se disenan filtros con M impar, mientras que, en
el segundo caso M es par.

Utilizaremos los siguientes ejemplos para ilustrar en qué consiste este método de
disefo de filtros FIR. Primero, para el caso de a = 0;y posteriormente, para a = | /2.

Ejemplo 1:

Partimos de un filtro pasa-bajo ideal con f; = 250 [Hz]. La senal de entrada la mues-
treamos con fc = 2000 [Hz] y el filtro analogo lo muestreamos con M = 21 (una de
sus muestras queda ubicada en la frecuencia f= 0 [Hz]). Para el diseno de este filtro,
utilizaremos las ecuaciones correspondientes a a = 0.

El valor de espaciamiento en frecuencia, Af, entre muestras consecutivas del filtro
analogo, se calcula con la siguiente ecuacién:

Que para este caso es Af=1000/10=100, es decir que, cada 100 Hz se toma una
muestra del espectro. Las muestras de amplitud distinta a cero se ubican en los si-
guientes valores de frecuencia {-200,-100,0,100,200} [Hz].Aunque la frecuencia
de corte deseada esta en 250 [Hz], con los valores de My f; seleccionados real-
mente se esta disenando un filtro con frecuencia de corte de 200 [HZz]. El filtro
muestreado se presenta en la siguiente figura.

Figura 34. Muestreo en frecuencia del filtro analogo, M=21.

A partir de esta grafica, se escribe H,, que corresponde con el filtro muestreado:

1 k=012

H.(k) = [[] k=345678910

Se debe tener en cuenta que solamente se definen los valores de k del eje de fre-
cuencias positivo (incluido el cero), dado que los otros valores son su espejo.

A partir de H; se obtiene G(k), utilizando la siguiente ecuacion:

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 57|

G(k) = (-1)xH: (k) Ecuacién 27

Realizando una alternancia en los signos de H; asi: signo positivo para los valores de
k pares; signo negativo para los valores de k impar.

Entonces, para este filtro se tiene que:

Finalmente, se calcula h[n] con la ecuacién (para a = 0.):

La cantidad maxima de términos cosenoidales de la ecuacion anterior es U = (M-
1)/2. Sin embargo, teniendo en cuenta que a partir de k =3 se tiene que H; (k) =0,
entonces solo existen los términos para k= 1y k = 2, es decir, dos términos cose-
noidales, quedando h[n] expresada asi:

y al reemplazar los valores de G(k), finalmente se obtiene la siguiente ecuacion de
h[n]:

Entonces, h[n] se obtiene en el rango [0 20], dado que M = 21.

Podemos utilizar el siguiente codigo en Python para obtener las 21 amplitudes de
los impulsos de h[n]:

import math

import numpy as np
M=21

GO=1

Gl=-1

G2=1

h= np.zeros (M)

pi = math.pi

cos = math.cos

for n in range (M) :
h[n]=1/M* (GO+2* ((Gl*cos (2*pi/M* (n+0.5))) +(G2*cos (4*pi/M* (n+0.5)))))
print (h)

Obteniendo el siguiente resultado:

[0.04445162 0.02119247 -0.01507826 -0.04761905 -0.05937998 -0.03943817
0.01259897 0.08580656 0.16110284 0.21731539 0.23809524 0.21731539
0.16110284 0.08580656 0.01259897 -0.03943817 -0.05937998 -0.04761905
-0.01507826 0.02119247 0.04445162]

| 58| Dora Maria Ballesteros, Diego Renza

Se puede apreciar que el primer término de h[n] (es decir h[0]) es igual al Gltimo
término (es decir h(M-1)); el segundo término es igual al penultimo, y asi sucesi-
vamente. De forma general, siempre que se disene un filtro con este método, se
cumplira que:

h(0) = h(M-1)
h(1) = h(M-2)
h(2) = h(M-3)

Como en este ejemplo M es impar, entonces el término h((M - 1)/2) no tiene pareja.

Ahora, vamos a graficar la respuesta en frecuencia del filtro que hemos disenado.
Utilizaremos el siguiente cédigo en Python:

from scipy import signal

import matplotlib

import matplotlib.pyplot as plt

a=1 # se hace igual a 1 porque el filtro es FIR
wl, vl = signal.freqgz(h, a)
plt.rcParams[“igure.figsize”] = (14,8)
plt.plot(wl, np.abs(vl))

Figura 35. Magnitud de la respuesta en frecuencia método muestreo en frecuencia, M=21.

El siguiente paso consiste en encontrar a partir de la grafica y de forma teodrica la
frecuencia de corte del filtro digital. Recordemos que el valor maximo es 7 [rad/

muestra].

Para este método de disefio, la frecuencia de corte se encuentra en la amplitud en
la cual se tiene una ganancia de -3 dB en escala logaritmica (o de 0.707 en escala
lineal) del valor en estado estable (tipicamente es |). Entonces, de forma visual en-
contramos que la frecuencia de corte es de aproximadamente 0.7 [rad/muestra].
Podemos utilizar el siguiente c6digo en Python para determinar su valor exacto, asi:

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 59'

x = np.where (abs(vl) > 0.707)
wcd = np.max (x)*pi/len (wl)
print (wcd)

0.6994952392758523
Finalmente, este valor se normaliza en el rango [0 1], de la siguiente manera:

fcn = wed / pl # frecuencia de corte normalizada en el rango (0 1)
print (fcn)

0.22265625
Por otro lado, la frecuencia de corte normalizada tedrica se calcula como:

Donde k es el maximo valor para el cual H; es distinto de cero (o el valor minimo
para el cual H, es distinto de cero, si el filtro es pasa-altos).

En nuestro ejemplo k=2. De tal forma que,

El valor experimental es muy cercano el valor tedrico, es decir, el filtro disefiado
obtenido se aproxima en gran medida al filtro que queriamos disefar.

Ejemplo 2:

Partimos de un filtro pasa-bajo ideal con fc= 450 [Hz], fs= 1800 [Hz], y cantidad
de muestras M = 18. Sin embargo, como M es par, se tiene que a = 1/2, lo que sig-
nifica que no existe muestra en f= 0 [Hz], sino en f= Af/2 [Hz].

El valor de espaciamiento en frecuencia, Af, entre muestras consecutivas del filtro
analogo, se calcula con la siguiente ecuacioén:

Obteniendo Af=900/9 = 100 [Hz], cuyas muestras de valor distinto a cero se
ubican en {-450,-350,-250,-150,-50,50,150,250,350,450} [Hz]. El filtro mues-
treado se presenta en la siguiente figura.

Figura 36. Muestreo en frecuencia del filtro analogo, M=18.

| 60| Dora Maria Ballesteros, Diego Renza

Como siguiente paso, escribiremos el valor de H, asi:

1 k=0,1,234
H, (k) = Iu PRl

Y obtenemos G(k) utilizando la ecuacion 27,

1 k=024
G{k]=[—1 k=1,3
0 k=5,678910

Y calculamos h[n], a partir de G(k). Se enfatiza que la ecvacion cuando M es par
se expresa en términos de senoidales, y no de cosenoidales como en el ejemplo
anterior.

La ecuacion general es:

La cantidad maxima de términos senoidales de la ecuacidn anterior es U 2%- 1, sin
embargo, teniendo en cuenta que a partir de k=5 se tiene que h,(k) = 0, solamente
se tendran en este ejemplo cinco términos correspondientes a k= 0,1,2,3 y 4.

Entonces, la respuesta al impulso del filtro se define, asi:

Y se pueden obtener sus valores con el siguiente codigo en Python:

import math
import numpy as np

M=18
G0=1
Gl=-1
G2=1
G3=-1
G4=1

h= np.zeros (M)
pi = math.pi
sin = math.sin

for n in range (M) :
h[n]=2/M* ((GO*sin (2*pi/M* (0.5)

(0 *(n+0.5)))+ (Gl*sin (2*pi/M* (1+0.5) * (n+0.5))) +
(G2*sin (2*pi/M* (240.5))

*(n+0.5))) +(G3*sin (2*pi/M* (3+0.5

(G4*sin (2*pi/M* (440.5)* (n+0.5))));

print (h)

Obteniendo como resultado,

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 61 |

[0.04272059 0.02875767 -0.057602 -0.01177696 0.07856742 -0.01681924
-0.1235279 0.10732509 0.48829857 0.48829857 0.10732509 -0.1235279
-0.01681924 0.07856742 -0.01177696 -0.057602 0.02875767 0.04272059]

De forma similar a lo obtenido en el ejemplo 1, el primer valor de h[n] es igual al
ultimo valor, el segundo valor es igual al penultimo valor, y asi sucesivamente.A dife-
rencia del caso anterior, no existe un valor que quede sin pareja, dado que M es par.

Continuaremos, dibujando la respuesta en frecuencia del filtro, con el siguiente co-
digo en Python:

from scipy import signal
import matplotlib
import matplotlib.pyplot as plt

a=1
wl, vl = signal.freqgz(h, a)
plt.rcParams|[“figure.figsize”] = (14,8)

plt.plot(wl, np.abs(vl))

Obteniendo,

Figura 37. Magnitud de la respuesta en frecuencia método muestreo en frecuencia, M=18.

A partir de la figura anterior, se puede determinar que la frecuencia de corte del
filtro digital se encuentra alrededor de 1.7 [rad/muestra] (evaluando la frecuencia
cuya amplitud es 0.707).

Nos podemos apoyar en Python para encontrar su valor, con el siguiente codigo:

X = np.where(abs(vl) > 0.707)
wcd = np.max (x) *pi/len (wl)
print (wcd)

1.6689710972195777

Ahora, calculamos la frecuencia de corte normalizada del filtro digital, asi:

fecn = wed / pi # frecuencia de corte normalizada en el rango (0 1)
print (fcn)

0.53125

| 62| Dora Maria Ballesteros, Diego Renza

Y el valor teorico, por medio de la ecuacion:
2 (2k+1)
Jov= 2
Obteniendo en este caso,

Ecuacion 32

2

fCN=18*%= 0.114.5=0.5

Como conclusién, hemos verificado que el filtro quedo disefado correctamente.

4.5. VENTANEO

Podemos decir que este método se inspird en el concepto de truncamiento de la
respuesta al impulso. Lo que se busca, es limitar la cantidad de impulsos de la sefal
sinc, para que el filtro sea realizable (es decir, que no requiera de una senal en tiem-
po discreto de duracion infinita por ambos lados del eje n), y, adicionalmente, sea
estable. Sin embargo, en este caso no se descartan los coeficientes que estén por
fuera del rango de la senal sinc seleccionado, sino que, se multiplica en el dominio
del tiempo discreto la sefal sinc por una ventana de duracién finita. El efecto en el
dominio de la frecuencia es el de la convolucion entre el espectro de la sefal sinc
(que corresponde al filtro ideal) y el espectro de la ventana.

Matematicamente, el concepto anterior lo expresamos asi:

Sea h[n] la respuesta al impulso del filtro ideal, y w[n] la ventana discreta de dura-
cion finita. Cada una de estas sefales tiene su correspondiente espectro, asi:

a1 2Z2L Hiw) Ecuacién 33
W[n]ﬂ W(w) Ecuacion 34

Donde DTFT corresponde a la Transformada de Fourier de Tiempo Discreto (Dis-
crete-Time Fourier Transform).

Entonces, se multiplica en el dominio del tiempo discreto la sefal h[n] de duracién
infinita con la sehal w[n] de duracion finita, obteniendo una respuesta al impulso de
duracién finita, la cual denominaremos h(n).

El espectro de h[n] lo denominaremos h(w), el cual se obtiene de convolucionar
los espectros de las senales h[n] y w[n], es decir,

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 63'

Donde ® es el operador de convolucién.

A continuacion, se presenta de forma grafica el proceso de ventaneo, en el dominio
del tiempo y de la frecuencia.

Figura 38. Diseno de filtros FIR utilizando el método de ventaneo.

Algo importante a resaltar, es que existen varios tipos de ventanas.Algunas son mas
suaves, otras tienen cambios bruscos de amplitud, unas son mas puntiagudas, otras
mas anchas. Cada tipo de ventana tiene su correspondiente espectro, por lo que, el
filtro resultante tendra caracteristicas diferentes. Por ejemplo, existen ventanas que
atenuan de forma significativa en frecuencias distantes a la frecuencia de corte, pero
que no atenlan muy bien en frecuencias cercanas a la frecuencia de corte. Otras
ventanas tienen un comportamiento casi homogéneo en la zona de rechazo, pero
con niveles de atenuaciéon menores que las primeras.

En Python, la libreria scipy tiene 23 tipos de ventanas® . Para disefarlas, se puede
utilizar la instruccion signal.get_window, o directamente con el nombre de la ventana.

A continuacion, se presenta el cédigo en Python para crear varios tipos de ventanas.

a) Ventana Boxcar (rectangular)

import matplotlib.pyplot as plt
from scipy import signal
M=50 # orden del filtro = M-1.

windowl = signal.boxcar (M)
from pylab import rcParams
rcParams [] =10, 6

plt.stem(windowl)

2 https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

| 64| Dora Maria Ballesteros, Diego Renza

b.) Ventana Hamming

window2 = signal.hamming (M)
from pylab import rcParams
rcParams [‘figure.figsize’] = 10, ©

plt.stem(window2)

c) Ventana Blackman

window3 = signal.blackman (M)
from pylab import rcParams
rcParams [‘figure.figsize’] = 10, 6
plt.stem(window3)

d) Ventana Hanning

window4 = signal.hann (M)
from pylab import rcParams
rcParams [‘figure.figsize’] = 10, 6

plt.stem(windowd)

e) VentanaTriangular

windowb5 = signal.triang (M)
from pylab import rcParams
rcParams [‘figure.figsize’] = 10, ©

plt.stem(window))

d) VentanaTukey

window6 = signal.windows.tukey (M)
from pylab import rcParams
rcParams|[‘figure.figsize’] = 10, ©

plt.stem(window6)

En la Figura 39 se presentan las seis ventanas disenadas, todas con el mismo orden
del filtro, M=50.

La primera ventana, correspondiente a boxcar, es una ventana cuyas muestras son
constantes e iguales a uno, de tal forma que, es equivalente a truncar la senal sinc
cuando se multiplica por esta ventana en el dominio del tiempo discreto. La quinta
ventana, triang, debe su nombre precisamente a la figura geométrica que generan sus
amplitudes. La ventana tukey se caracteriza porque tiene una zona creciente seguida
de una zona constante y posteriormente una zona decreciente. Las otras tres venta-
nas que se seleccionaron en este ejemplo son muy similares entre si, con un cambio
de amplitud suave (sin saltos abruptos).Tanto la ventana blackmann como la hanning
tienen su primera y dltima muestra de amplitud igual a cero, a diferencia de la ven-
tana hamming que inicia y termina con una amplitud mayor a cero.Adicionalmente,
de estas tres ventanas la mas “angosta” es la ventana blackman.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 65'

Figura 39. Ejemplos de ventanas, M=50: a) boxcar, b) hamming, c) blackman, d) hanning, €)
triangular, f) tukey.

Ahora, compararemos la respuesta en frecuencia de las seis ventanas. Para ello, uti-
lizaremos el siguiente codigo en Python:

from scipy.fft import fft, fftshift

import numpy as np

plt.figure ()

window = windowl # se reemplaza para cada una de las ventanas dise-
fladas previamente

Al = fft(window, 2048) / (len(window)/2.0)

freql = np.linspace(-0.5, 0.5, len(Al))

freql = freql * 2

responsel = np.abs (fftshift (Al / abs(Al).max()))

responsel = 20 * np.logl0O (np.maximum(responsel, 1le-10))
from pylab import rcParams
rcParams [‘figure.figsize’] = 10, 6

N = len(freql)//2
plt.plot (freql [N+1:2*N], responsel[N+1:2*N])

Obteniendo los siguientes espectros:

| 66| Dora Maria Ballesteros, Diego Renza

Figura 40. Respuesta en frecuencia para M=50 de las ventanas: a) boxcar, b) hamming, c)
blackman, d) hanning, e) triangular, f) tukey.

Como era de esperarse, los espectros obtenidos de las seis ventanas disenadas
difieren entre si. Empezaremos comentando el espectro de boxcar, el cual presenta
la menor atenuacion en la banda de rechazo, oscilando su ganancia entre -30 dB a
-60dB, mientras que otras ventanas como la blackman llegan a tener hasta -160 dB
de ganancia. En el caso de la ventana hamming la ganancia oscila entre -50dB y -90dB.

Como paso final, disenaremos el filtro FIR con el método de ventaneo. Para ello, de-
bemos seleccionar la ventana por la cual multiplicaremos en el dominio del tiempo
la senal sinc; mientras que, en el dominio de la frecuencia se realizara la convolucion
de los dos espectros. En Python utilizamos la instruccion signal.firwin de la
libreria scipy para el disefio del filtro FIR por el método de ventaneo.

Los filtros que diseharemos a continuacién son pasa-bajos. Utilizaremos fs= 8000 [Hz],
y entonces por Nyquist la maxima frecuencia de corte es fcmax = fs/2 = 4000[Hz]. Se-
leccionaremos como frecuencia de corte fc = 2000[Hz], obteniendo que fc = fcmax /2.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 67'

Importe de librerias:

from scipy import signal

import matplotlib

import matplotlib.pyplot as plt
import numpy as np

import math

Parametros de diseno (M, frecuencia y tipo de filtro):

M=50 # el filtro es de orden M-1
£=2000
pass_zero=True # True corresponde a un filtro pasabajo.

Diseno del filtro FIR con la ventana boxcar y visualizacion de la respuesta en fre-
cuencia:

hl= signal.firwin(M, £, window='boxcar’, £s=8000, pass_zero=pass_
zZero)
wl, vl = signal.freqgz(hl, 1)

Diseno del filtro FIR con la ventana hamming y visualizacion de la respuesta en fre-
cuencia:

h2= signal.firwin(M, £, window=’hamming’, £s=8000, pass zero=pass |
Zero)

w2, v2 = signal.freqgz(h2, 1)

Diseno del filtro FIR con la ventana blackman y visualizacion de la respuesta en
frecuencia:

h3= signal.firwin (M, f, window='blackman’, £s=8000, pass zero=pass |
Zero)

w3, v3 = signal.freqgz (h3, 1)

Diseno del filtro FIR con la ventana hanning y visualizacién de la respuesta en fre-
cuencia:

h4= signal.firwin (M, £, window=’hann’, fs=8000, pass zero=pass_zero)

wd4, v4 = signal.freqz(h4, 1)

Diseno del filtro FIR con la ventana triangular y visualizacion de la respuesta en
frecuencia:

h5= signal.firwin(M, £, window=’triang’, £s=8000, pass zero=pass |
zero)

w5, v5 = signal.freqgz (h5, 1)

| 68| Dora Maria Ballesteros, Diego Renza

Diseno del filtro FIR con la ventana tukey y visualizacion de la respuesta en frecuen-
cia:

h6= signal.firwin(M, £, 200, window=’tukey’, £s=8000)
w6, v6 = signal.freqgz (h6, 1)

Primero dibujaremos la respuesta al impulso de los filtros, h(n), (resultado de mul-
tiplicar en el dominio del tiempo la sefal sinc por la ventana), y posteriormente, la
respuesta en frecuencia del filtro disefado, H(w), (resultado de convolucionar en

el dominio de la frecuencia la respuesta en frecuencia de la ventana con la del filtro
ideal).

Figura 41. Respuesta al impulso, ﬁ(n), método de ventaneo, M=50: a) boxcar, b) hamming,
c) blackman, d) hanning, e) triangular, f) tukey.

Se utiliza el siguiente codigo para dibujar las seis respuestas al impulso de los filtros:

plt.stem(h) # h= hl, h2, .. ho.

Al comparar las grificas, se aprecia que las diferencias se ven mas marcadas en los

primeros y ultimos impulsos de h(n), es decir, en las amplitudes mas pequenas de
la senal sinc.

Posteriormente, dibujaremos la respuesta en frecuencia de los seis filtros FIR, utili-
zando escala logaritmica:

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 69'

plt.plot(w, 20*np.logl0(np.abs(v))) # w= wl, w2, .. w6. v=vl, v2, .. v6.|

Y obtenemos los siguientes espectros:

Figura 42. Respuesta en frecuencia de filtros FIR disefados con ventanas (escala logaritmi-
ca), M=50: a) boxcar, b) hamming, c) blackman, d) hanning, e) triangular, f) tukey.

Como se observa, el comportamiento de la respuesta en frecuencia del filtro en la
banda de paso cambia de forma significativa entre las ventanas seleccionadas para su
diseno. Las mayores atenuaciones (ganancias alrededor de -100dB) se obtienen con
las ventanas hamming, blackman, y hanning.

Finalmente, visualizaremos la respuesta en frecuencia de los filtros, pero ahora en
escala lineal. El objetivo es poder determinar de forma grafica la frecuencia de corte
del filtro digital obtenido.

Para ello, utilizaremos la siguiente instruccién para cada filtro:

plt.plot(w, (np.abs(v))) # w= wl, w2, .. w6. v= vl, v2, .. V6.

Y obtenemos las siguientes graficas:

| 70| Dora Maria Ballesteros, Diego Renza

Figura 43. Respuesta en frecuencia de filtros FIR disefiados con ventanas (escala lineal),
M=50: a) boxcar, b) hamming, c) blackman, d) hanning, e) triangular, f) tukey.

Podemos observar que tanto en la banda de paso como en la de rechazo, el filtro
que presenta mayores ondulaciones es boxcar (debido al fendmeno de Gibbs que
vimos previamente). En segundo lugar, se encuentra el filtro disefiado con la ventana
tukey. Los filtros con “mejor” comportamiento, de los evaluados en esta seccion,
son hamming, blackman y hanning. En el caso del filtro disefado con la ventana triang,
su respuesta no es tan “plana” en las bandas de paso y de rechazo.

Como paso final, calcularemos la frecuencia de corte del filtro digital y la compara-
remos con la frecuencia de corte tedrica. Como se menciono en el Capitulo 2, se
debe encontrar entre [0 7] (en unidades rad/muestra). Como este ejemplo utilizé
fc = femax /2, entonces la frecuencia de corte tedrica del filtro digital es de /2.

Con el siguiente cédigo en Python encontramos la frecuencia de corte experimen-

tal (wcq) de los seis filtros FIR disenados con las ventanas boxcar, hamming, blackman,
hanning, triangular, y tukey.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 71 |

pi = math.pi
x = np.where(abs(v) > 0.707) # Para v= vl, v2, .. v6.
wcd = np.max (x) *pi/len(w) # Para w= wl, w2, .. w6.

print (wcd)

Y se obtienen los siguientes resultados:

Ventana | boxcar hamming | blackman | hanning triangular | tukey
Wed 1.5401 1.5155 1.5033 1.5094 1.5155 1.5401

Los cuales son cercanos al valor tedrico, correspondiente a |1.5707 [radfnuestra].

4.6. CEROS EN FILTROS FIR

Partiendo de la funcion de transferencia del filtro digital, H(z), que estudiamos en el
Capitulo 2 de este libro, tenemos que un filtro FIR se expresa de la siguiente forma:

Donde M -1 es el orden del filtro. Entonces, la cantidad de términos de H(z) dife-
rentes de cero es M. Esta funcion de transferencia también se puede escribir como
una multiplicatoria (en lugar de una sumatoria) de M -1 términos, a partir de la
factorizacion del polinomio de z, asi:

Por ejemplo, vamos a suponer que la funcidon de transferencia del filtro FIR es
H(z) =1- 2z + 2% entonces factorizamos el polinomio de segundo orden obte-
niendo dos términos, asi, H(z) = (1 - z1)(1 - z!). Cada uno de los términos repre-
senta las raices del numerador de la funcion de transferencia, y se conocen como
los ceros del filtro digital. Es decir, cada término se iguala a cero y se despeja z
para obtener los ceros del filtro.

Para este ejercicio, se tienen dos ceros en la misma posicion, ubicados en:
(1-zHY=0 | =zt o oz=1

Es decir,c;=1,¢,= 1.

Se resalta que en el caso de los filtros FIR, solamente se tienen raices
en el numerador, es decir, los filtros FIR son sistemas solo-ceros.

En el capitulo 5 se generalizara este concepto a filtros IIR.

A medida que avancemos en el libro conoceremos el “significado” de los ceros de
un filtro digital. Por ahora, graficaremos su posicién en el plano z, apoyandonos en
lenguaje de programacién Python.

| 72| Dora Maria Ballesteros, Diego Renza

Partiremos con el filtro de promedio que estudiamos en el Capitulo 2 y seguiremos
con el método de ventaneo.

Grafica polos y ceros filtro de promedio:

Lo primero que vamos a realizar es definir el vector de amplitudes del filtro
de promedio utilizando np.ones. Posteriormente, calculamos los ceros (z),
polos (p) y ganancia (k), de la funcién de transferencia del filtro, por medio
de signal.tf2zpk.Finalmente, dibujamos el circulo unitario en el plano z
con plt.plot (np.cos (theta),np.sin(theta)),y ubicamos los ce-
ros con plt.scatter (np.real (z1),np.imag(zl)). Se resalta que el
filtro de promedio no tiene polos, dado que es un filtro FIR. Este concepto se
explica con mayor detalle en el proximo capitulo.

El co6digo completo en Python se presenta a continuacion:

import matplotlib

import matplotlib.pyplot as plt
import numpy as np

from scipy import signal

import math

2 #M=2, 3, 4, 5.

np.ones (M) / (M)

z, p, k = signal.tf2zpk(b,1)
print(len(z))

theta = np.linspace(-math.pi,math.pi,201)
plt.rcParams[“igure.figsize”] = (7,7)
plt.plot (np.cos (theta),np.sin(theta))
plt.scatter (np.real(z),np.imag(z))
plt.show ()

M
b

Y se obtienen las siguientes graficas:

Figura 44. Grifica de polos y ceros filtro de promedio, para: a) M=2, b) M=3, c) M=4, d) M=5.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 73|

De la figura anterior, se pueden enumerar las siguientes conclusiones:

* Todos los ceros de un filtro de promedio se ubican sobre el circulo
unitario.

* La cantidad de ceros es igual a M - 1. Es decir, se tienen tantos
ceros como el orden del filtro.

* Cuando el valor de M - 1. es par, cada cero tiene su conjugado, es
decir, comparten el mismo valor de la parte real y con signo con-
trario en la parte imaginaria.

¢ Cuando el valor de M - 1. es impar, se tiene un cero en z = -1.

* Los ceros se concentran en la parte izquierda de la grafica, como
“alejandose” de z = -1

Grafica polos y ceros filtro diseiiado por el método de ventaneo:

Para este método de disefo, la grafica de polos y ceros es distinta a la obtenida con
el filtro de promedio. Se sugiere utilizar M par en filtros pasa-bajos, y M impar en
filtros pasa-altos.

Para filtro pasa-bajos y ventana hamming, utilizamos el siguiente cédigo en Python:

from scipy import signal

import matplotlib

import matplotlib.pyplot as plt

import numpy as np

import math

M=2 # hacer M = 2, 4, 6, 8

£1=2000

pass zero=True # Si es True corresponde a un filtro pasa-bajo.

hl= signal.firwin (M, fl, window=’hamming’, £fs=8000, pass zero=pass zero)
z1, pl, k1 = signal.tf2zpk(hl,1) N N
theta = np.linspace(-math.pi,math.pi, 201)
plt.rcParams[“figure.figsize”] = (7,7)
plt.plot(np.cos(theta),np.sin(theta))
plt.scatter(np.real(zl),np.imag(zl))

plt.show()

| 74| Dora Maria Ballesteros, Diego Renza

Figura 45. Grafica de polos y ceros, filtro pasa-bajos disenado con la ventana hamming: a)
M=2,b) M=4, c) M=6,d) M=8.

En este caso, se obtienen ceros por fuera del circulo unitario, principalmente en va-
lores negativos de z, pero eventualmente también en valores positivos. No obstante,
se aprecia que uno de los ceros se encuentra en z = -1, dado que se disen6 un filtro
pasa-bajos.

A continuacién, vamos a graficar los polos y ceros, pero ahora de un filtro pasa-altos.

M=4

£1=2000

pass zero=False # Si es False a un filtro pasa alto

hl= signal.firwin (M, fl, window=’hamming’, £s=8000, pass_zero=pass_zero)
z1l, pl, k1 = signal.tf2zpk(hl, 1)

theta = np.linspace(-math.pi,math.pi,201)

plt.rcParams[“figure.figsize”] = (7,7)

plt.plot (np.cos(theta),np.sin(theta))

plt.scatter (np.real(zl),np.imag(zl))

plt.show()

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | '75|

Figura 46. Grifica de polos y ceros, filtro pasa-altos disenado con la ventana hamming: a)
M=3,b) M=7,c) M=I1,d) M=15.

La principal diferencia en el comportamiento de la grafica de polos y ceros entre
filtros pasa-bajos y pasa-altos, es que en los Ultimos los ceros se concentran alrede-
dor de z =1 (ver Figura 46), mientras que en los primeros se concentran alrededor
de z = -1. Esta observacion es valida independiente del método de diseno del filtro
y/o de la ventana seleccionada.

