
51PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

CAPÍTULO 4.

Metodos de diseño de filtros FIR
En este cuarto capítulo del libro vamos a conocer y a aplicar varios métodos o téc-
nicas de diseño de filtros FIR. Partiremos de los filtros ideales y comprenderemos
la razón por la cual no son realizables. Posteriormente, conoceremos el método
de muestreo en frecuencia, y finalizaremos con el método de ventaneo. De forma
simultánea abordaremos esta temática desde el punto de vista teórico, y a nivel de
simulación el lenguaje de programación Python.

Al finalizar el capítulo, deberás estar en capacidad de:

1.	 Explicar la razón por la cual los filtros ideales no son realizables.

2.	 Explicar el fenómeno de Gibbs a partir del truncamiento de la respuesta al
impulso de un filtro ideal.

3.	 Diseñar filtros (pasa-bajos, pasa-altos, pasa-banda) aplicando el método de
muestreo en frecuencia, apoyándose en Python para los cálculos.

4.	 Diseñar filtros (pasa-bajos, pasa-altos, pasa-banda) aplicando el método de
ventaneo, apoyándose en Python para los cálculos.

5.	 Explicar el comportamiento de los ceros en filtros FIR diseñados por los
métodos de promedio y ventaneo.

 
4.1.	 FILTROS ANÁLOGOS IDEALES
Para abordar el concepto de filtros ideales, debemos primero repasar la clasifica-
ción de los filtros respecto a la respuesta en frecuencia. Los filtros se clasifican en:
pasa-bajos, pasa-altos, pasa-banda y rechaza-banda.

En el caso de los filtros pasa-bajos, la banda de paso inicia en los 0 [Hz] y termina
en la frecuencia de corte del filtro, denominada fc. O de forma equivalente, inicia
en 0 [rad⁄seg] y termina en Wc, para Wc = 2πfc. A partir de la frecuencia de corte
inicia la banda de rechazo, en la cual el filtro idealmente atenúa por completo esas
frecuencias de la señal de entrada. Por lo tanto, en el filtro ideal la ganancia (G) en
la banda de paso es constante (típicamente G = 1), y en la banda de rechazo es cero.
En la frecuencia de corte se tiene una caída con pendiente infinita.

52 Dora Maria Ballesteros, Diego Renza

La respuesta en frecuencia del filtro pasa-bajo ideal se presenta en la Figura 27.

Figura 27. Respuesta en frecuencia de un filtro análogo pasa-bajo ideal.

En el caso del filtro pasa-alto ideal, la banda de rechazo inicia en 0 [Hz] y termina
en la frecuencia de corte. La banda de paso corresponde a las frecuencias mayores a
la fc. Tanto el filtro pasa-alto como el filtro pasa-bajo, tienen una sola banda de paso
y una sola banda de rechazo. La Figura 28 presenta la respuesta en frecuencia del
filtro pasa-altos ideal.

Figura 28. Respuesta en frecuencia de un filtro análogo pasa-alto ideal.

Los otros dos tipos de filtro son pasa-banda y rechaza-banda. El primero, tiene una
banda de paso y dos bandas de rechazo (Figura 29). El segundo, tiene dos bandas de
paso y una banda de rechazo (Figura 30). En ambos casos, se tienen dos frecuencias
de corte, denominadas fc1 y fc2.

Figura 29. Respuesta en frecuencia de un filtro análogo pasa-banda ideal.

53PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 30. Respuesta en frecuencia de un filtro análogo rechaza-banda ideal.

4.2.	 FILTROS DIGITALES IDEALES
En el caso de los filtros digitales, la respuesta en frecuencia bilateral la expresamos
en el rango [-π π)] con unidades [rad/muestra], o en el rango [-1 1] con unidades
[ciclo/muestra].

El filtro digital pasa-bajo ideal se presenta en la Figura 34.

Figura 31. Respuesta en frecuencia del filtro digital pasa-bajo ideal, valores en [rad/muestra].

Matemáticamente, se define como:

H(ejω) = {0 e.o.c.(en otro caso) con periodicidad de 2π	 Ecuación 24

Las características del filtro, son:

•	 Banda de paso completamente plana.

•	 Atenuación infinita en la banda de rechazo.

•	 Fase cero (sin retraso).

1 |ω|≤ωc

54 Dora Maria Ballesteros, Diego Renza

En el dominio del tiempo discreto, la respuesta al impulso del filtro (es decir, la
Transformada de Fourier Discreta Inversa: IDTFT), es igual a:

		 h[n] = sin(ωcn)	 Ecuación 25

La cual corresponde a una señal de duración infinita por ambos lados del eje n, co-
nocida como señal sinc.

Revisemos ahora la estabilidad de este filtro pasa-bajos ideal. Recordando la defini-
ción de estabilidad presentada anteriormente en este libro (Capítulo 3.5), se tiene
que el filtro es estable sí y solo si:

∑n|h[n]| < L para L<∞

Entonces, el filtro pasa-bajos ideal no es estable, independiente del valor de ωc

que

se seleccione, dado que la sumatoria de la magnitud de su respuesta al impulso no
es finita.

A partir del concepto anterior, el primer método de diseño de filtros FIR correspon-
de al truncamiento de su respuesta al impulso. De tal forma que, partiendo de un
filtro FIR ideal se selecciona un número finito de impulsos (a ambos lados del eje n
) para convertirlo en un filtro estable.

4.3.	 TRUNCAMIENTO DE LA RESPUESTA AL IMPULSO
Este método consiste en limitar la cantidad de muestras de la respuesta al impulso
del filtro. Se parte de un h[n] que tiene infinitos impulsos con amplitud distinta a
cero, y se llega a un h[n] que tiene un número de impulsos finitos, simétrico res-
pecto al origen.

Cuando se aplica truncamiento a h[n], se hace visible el fenómeno de Gibbs en la
respuesta en frecuencia del filtro, que consiste en la aparición de pequeñas on-
dulaciones tanto en la banda de paso como en la banda de rechazo del filtro. La
diferencia (error) entre la máxima amplitud del rizado en relación con la amplitud
plana del filtro ideal es del 9%, aproximadamente. Este error aparecerá en H(ejω),
independiente de la cantidad de muestras seleccionadas al truncar h[n].

Por ejemplo, supongamos que la señal sinc en el dominio del tiempo discreto de
duración infinita la truncamos en el rango -5 ≤ n ≤ 5, cuyo espectro se presenta en
la Figura 32.

πn

55PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 32. Espectro por truncamiento de h[n] con -5≤n≤5.

Si la misma señal sinc la truncamos, pero ahora en el rango -20 ≤ n ≤ 20, obtendre-
mos el espectro de la Figura 33.

Figura 33. Espectro por truncamiento de h[n] con -20≤n≤20.

Como se aprecia en las figuras anteriores, cuando se realiza truncamiento de h[n] se
tiene un efecto de “rizado”, tanto en la banda de paso, como en la banda de rechazo.
Este rizado se va “compactando” a medida que la cantidad de muestras selecciona-
das de h[n] aumenta, pero no desaparece.

4.4.	 MUESTREO EN FRECUENCIA
Este método de diseño de filtros FIR consiste en muestrear la respuesta en frecuen-
cia de un filtro análogo ideal, y aplicar un conjunto de ecuaciones que nos permiten
obtener la respuesta al impulso del filtro digital. Existen dos grupos de ecuaciones

56 Dora Maria Ballesteros, Diego Renza

dependiendo de si el filtro tiene una muestra en ω = 0 (es decir, α = 0) o no (es
decir, α = 1)⁄2). En el primer caso, se diseñan filtros con M impar, mientras que, en
el segundo caso M es par.

Utilizaremos los siguientes ejemplos para ilustrar en qué consiste este método de
diseño de filtros FIR. Primero, para el caso de α = 0; y posteriormente, para α = 1)⁄2.

Ejemplo 1:

Partimos de un filtro pasa-bajo ideal con fc = 250 [Hz]. La señal de entrada la mues-
treamos con fc = 2000 [Hz] y el filtro análogo lo muestreamos con M = 21 (una de
sus muestras queda ubicada en la frecuencia f = 0 [Hz]). Para el diseño de este filtro,
utilizaremos las ecuaciones correspondientes a α = 0.

El valor de espaciamiento en frecuencia, ∆f, entre muestras consecutivas del filtro
análogo, se calcula con la siguiente ecuación:

Que para este caso es ∆f=1000⁄10=100, es decir que, cada 100 Hz se toma una
muestra del espectro. Las muestras de amplitud distinta a cero se ubican en los si-
guientes valores de frecuencia {-200,-100,0,100,200} [Hz]. Aunque la frecuencia
de corte deseada está en 250 [Hz], con los valores de M y fs seleccionados real-
mente se está diseñando un filtro con frecuencia de corte de 200 [Hz]. El filtro
muestreado se presenta en la siguiente figura.

Figura 34. Muestreo en frecuencia del filtro análogo, M=21.

A partir de esta gráfica, se escribe Hr, que corresponde con el filtro muestreado:

Se debe tener en cuenta que solamente se definen los valores de k del eje de fre-
cuencias positivo (incluido el cero), dado que los otros valores son su espejo.

A partir de Hr se obtiene G(k), utilizando la siguiente ecuación:

57PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

		 G(k) = (-1)k Hr (k)	 Ecuación 27

Realizando una alternancia en los signos de Hr así: signo positivo para los valores de
k pares; signo negativo para los valores de k impar.

Entonces, para este filtro se tiene que:

Finalmente, se calcula h[n] con la ecuación (para α = 0.):

La cantidad máxima de términos cosenoidales de la ecuación anterior es U = (M-
1)/2. Sin embargo, teniendo en cuenta que a partir de k =3 se tiene que Hr (k) = 0,
entonces solo existen los términos para k = 1 y k = 2, es decir, dos términos cose-
noidales, quedando h[n] expresada así:

y al reemplazar los valores de G(k), finalmente se obtiene la siguiente ecuación de
h[n]:

Entonces, h[n] se obtiene en el rango [0 20], dado que M = 21.

Podemos utilizar el siguiente código en Python para obtener las 21 amplitudes de
los impulsos de h[n]:
import math
import numpy as np
M=21
G0=1
G1=-1
G2=1
h= np.zeros(M)
pi = math.pi
cos = math.cos

for n in range(M):
	 h[n]=1/M*(G0+2*((G1*cos(2*pi/M*(n+0.5)))+(G2*cos(4*pi/M*(n+0.5)))))
print(h)

Obteniendo el siguiente resultado:

[0.04445162 0.02119247 -0.01507826 -0.04761905 -0.05937998 -0.03943817
 0.01259897 0.08580656 0.16110284 0.21731539 0.23809524 0.21731539
 0.16110284 0.08580656 0.01259897 -0.03943817 -0.05937998 -0.04761905
 -0.01507826 0.02119247 0.04445162]

58 Dora Maria Ballesteros, Diego Renza

Se puede apreciar que el primer término de h[n] (es decir h[0]) es igual al último
término (es decir h(M-1)); el segundo término es igual al penúltimo, y así sucesi-
vamente. De forma general, siempre que se diseñe un filtro con este método, se
cumplirá que:

h(0) = h(M-1)

h(1) = h(M-2)

h(2) = h(M-3)

…

Como en este ejemplo M es impar, entonces el término h((M - 1)/2) no tiene pareja.

Ahora, vamos a graficar la respuesta en frecuencia del filtro que hemos diseñado.
Utilizaremos el siguiente código en Python:

from scipy import signal
import matplotlib
import matplotlib.pyplot as plt
a=1 # se hace igual a 1 porque el filtro es FIR
w1, v1 = signal.freqz(h, a)
plt.rcParams[“figure.figsize”] = (14,8)
plt.plot(w1, np.abs(v1))

Figura 35. Magnitud de la respuesta en frecuencia método muestreo en frecuencia, M=21.

El siguiente paso consiste en encontrar a partir de la gráfica y de forma teórica la
frecuencia de corte del filtro digital. Recordemos que el valor máximo es π [rad/
muestra].

Para este método de diseño, la frecuencia de corte se encuentra en la amplitud en
la cual se tiene una ganancia de -3 dB en escala logarítmica (o de 0.707 en escala
lineal) del valor en estado estable (típicamente es 1). Entonces, de forma visual en-
contramos que la frecuencia de corte es de aproximadamente 0.7 [rad ⁄ muestra].
Podemos utilizar el siguiente código en Python para determinar su valor exacto, así:

59PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

x = np.where(abs(v1) > 0.707)
wcd = np.max(x)*pi/len(w1)
print(wcd)

0.6994952392758523

Finalmente, este valor se normaliza en el rango [0 1], de la siguiente manera:

fcn = wcd / pi # frecuencia de corte normalizada en el rango (0 1)
print(fcn)

0.22265625

Por otro lado, la frecuencia de corte normalizada teórica se calcula como:

Donde k es el máximo valor para el cual Hr es distinto de cero (o el valor mínimo
para el cual Hr es distinto de cero, si el filtro es pasa-altos).

En nuestro ejemplo k=2. De tal forma que,

El valor experimental es muy cercano el valor teórico, es decir, el filtro diseñado
obtenido se aproxima en gran medida al filtro que queríamos diseñar.

Ejemplo 2:

Partimos de un filtro pasa-bajo ideal con fc = 450 [Hz], fs = 1800 [Hz], y cantidad
de muestras M = 18. Sin embargo, como M es par, se tiene que α = 1⁄2, lo que sig-
nifica que no existe muestra en f = 0 [Hz], sino en f = ∆f ⁄ 2 [Hz].

El valor de espaciamiento en frecuencia, ∆f, entre muestras consecutivas del filtro
análogo, se calcula con la siguiente ecuación:

Obteniendo ∆f=900 ⁄ 9 = 100 [Hz], cuyas muestras de valor distinto a cero se
ubican en {-450,-350,-250,-150,-50,50,150,250,350,450} [Hz]. El filtro mues-
treado se presenta en la siguiente figura.

Figura 36. Muestreo en frecuencia del filtro análogo, M=18.

60 Dora Maria Ballesteros, Diego Renza

Como siguiente paso, escribiremos el valor de Hr, así:

Y obtenemos G(k) utilizando la ecuación 27,

Y calculamos h[n], a partir de G(k). Se enfatiza que la ecuación cuando M es par
se expresa en términos de senoidales, y no de cosenoidales como en el ejemplo
anterior.

La ecuación general es:

La cantidad máxima de términos senoidales de la ecuación anterior es U = M - 1 , sin
embargo, teniendo en cuenta que a partir de k=5 se tiene que hr(k) = 0, solamente
se tendrán en este ejemplo cinco términos correspondientes a k = 0,1,2,3 y 4.

Entonces, la respuesta al impulso del filtro se define, así:

Y se pueden obtener sus valores con el siguiente código en Python:

import math
import numpy as np

M=18
G0=1
G1=-1
G2=1
G3=-1
G4=1

h= np.zeros(M)
pi = math.pi
sin = math.sin

for n in range(M):
	 h[n]=2/M*((G0*sin(2*pi/M*(0.5)*(n+0.5)))+(G1*sin(2*pi/M*(1+0.5)*(n+0.5)))+
		 (G2*sin(2*pi/M*(2+0.5)*(n+0.5)))+(G3*sin(2*pi/M*(3+0.5)*(n+0.5)))
+
 (G4*sin(2*pi/M*(4+0.5)*(n+0.5))));

print(h)

Obteniendo como resultado,

2

61PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

[0.04272059 0.02875767 -0.057602 -0.01177696 0.07856742 -0.01681924
 -0.1235279 0.10732509 0.48829857 0.48829857 0.10732509 -0.1235279
 -0.01681924 0.07856742 -0.01177696 -0.057602 0.02875767 0.04272059]

De forma similar a lo obtenido en el ejemplo 1, el primer valor de h[n] es igual al
último valor, el segundo valor es igual al penúltimo valor, y así sucesivamente. A dife-
rencia del caso anterior, no existe un valor que quede sin pareja, dado que M es par.

Continuaremos, dibujando la respuesta en frecuencia del filtro, con el siguiente có-
digo en Python:

from scipy import signal
import matplotlib
import matplotlib.pyplot as plt
a=1
w1, v1 = signal.freqz(h, a)
plt.rcParams[“figure.figsize”] = (14,8)
plt.plot(w1, np.abs(v1))

Obteniendo,

Figura 37. Magnitud de la respuesta en frecuencia método muestreo en frecuencia, M=18.

A partir de la figura anterior, se puede determinar que la frecuencia de corte del
filtro digital se encuentra alrededor de 1.7 [rad ⁄ muestra] (evaluando la frecuencia
cuya amplitud es 0.707).

Nos podemos apoyar en Python para encontrar su valor, con el siguiente código:

x = np.where(abs(v1) > 0.707)
wcd = np.max(x)*pi/len(w1)
print(wcd)

1.6689710972195777

Ahora, calculamos la frecuencia de corte normalizada del filtro digital, así:

fcn = wcd / pi # frecuencia de corte normalizada en el rango (0 1)
print(fcn)

0.53125

62 Dora Maria Ballesteros, Diego Renza

 Y el valor teórico, por medio de la ecuación:

	 fcN
 = 2 (2k + 1)	

	 Ecuación 32

Obteniendo en este caso,

fcN
= 2

 *
 9 = 0.11 * 4.5 = 0.5

Como conclusión, hemos verificado que el filtro quedó diseñado correctamente.

4.5. 	 VENTANEO

Podemos decir que este método se inspiró en el concepto de truncamiento de la
respuesta al impulso. Lo que se busca, es limitar la cantidad de impulsos de la señal
sinc, para que el filtro sea realizable (es decir, que no requiera de una señal en tiem-
po discreto de duración infinita por ambos lados del eje n), y, adicionalmente, sea
estable. Sin embargo, en este caso no se descartan los coeficientes que estén por
fuera del rango de la señal sinc seleccionado, sino que, se multiplica en el dominio
del tiempo discreto la señal sinc por una ventana de duración finita. El efecto en el
dominio de la frecuencia es el de la convolución entre el espectro de la señal sinc
(que corresponde al filtro ideal) y el espectro de la ventana.

Matemáticamente, el concepto anterior lo expresamos así:

Sea h[n] la respuesta al impulso del filtro ideal, y w[n] la ventana discreta de dura-
ción finita. Cada una de estas señales tiene su correspondiente espectro, así:

	 h[n]→ H(ω)	 Ecuación 33

	 w[n]→ W(ω)	 Ecuación 34

Donde DTFT corresponde a la Transformada de Fourier de Tiempo Discreto (Dis-
crete-Time Fourier Transform).

Entonces, se multiplica en el dominio del tiempo discreto la señal h[n] de duración
infinita con la señal w[n] de duración finita, obteniendo una respuesta al impulso de
duración finita, la cual denominaremos ĥ(n).

El espectro de h[n] lo denominaremos h(ω), el cual se obtiene de convolucionar
los espectros de las señales h[n] y w[n], es decir,

M 2

18 2

DTFT

DTFT

̂ ̂

63PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Donde ⊛ es el operador de convolución.

A continuación, se presenta de forma gráfica el proceso de ventaneo, en el dominio
del tiempo y de la frecuencia.

Figura 38. Diseño de filtros FIR utilizando el método de ventaneo.

Algo importante a resaltar, es que existen varios tipos de ventanas. Algunas son más
suaves, otras tienen cambios bruscos de amplitud, unas son más puntiagudas, otras
más anchas. Cada tipo de ventana tiene su correspondiente espectro, por lo que, el
filtro resultante tendrá características diferentes. Por ejemplo, existen ventanas que
atenúan de forma significativa en frecuencias distantes a la frecuencia de corte, pero
que no atenúan muy bien en frecuencias cercanas a la frecuencia de corte. Otras
ventanas tienen un comportamiento casi homogéneo en la zona de rechazo, pero
con niveles de atenuación menores que las primeras.

En Python, la librería scipy tiene 23 tipos de ventanas2 . Para diseñarlas, se puede
utilizar la instrucción signal.get_window, o directamente con el nombre de la ventana.

A continuación, se presenta el código en Python para crear varios tipos de ventanas.

a)	 Ventana Boxcar (rectangular)

import matplotlib.pyplot as plt
from scipy import signal
M=50 # orden del filtro = M-1.
window1 = signal.boxcar(M)
from pylab import rcParams
rcParams[‘figure.figsize’] = 10, 6
plt.stem(window1)

2 https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

64 Dora Maria Ballesteros, Diego Renza

b.)	 Ventana Hamming

window2 = signal.hamming(M)
from pylab import rcParams
rcParams[‘figure.figsize’] = 10, 6
plt.stem(window2)

c)	 Ventana Blackman

window3 = signal.blackman(M)
from pylab import rcParams
rcParams[‘figure.figsize’] = 10, 6
plt.stem(window3)

d)	 Ventana Hanning

window4 = signal.hann(M)
from pylab import rcParams
rcParams[‘figure.figsize’] = 10, 6
plt.stem(window4)

e)	 Ventana Triangular

window5 = signal.triang(M)
from pylab import rcParams
rcParams[‘figure.figsize’] = 10, 6
plt.stem(window5)

d)	 Ventana Tukey

window6 = signal.windows.tukey(M)
from pylab import rcParams
rcParams[‘figure.figsize’] = 10, 6
plt.stem(window6)

En la Figura 39 se presentan las seis ventanas diseñadas, todas con el mismo orden
del filtro, M=50.

La primera ventana, correspondiente a boxcar, es una ventana cuyas muestras son
constantes e iguales a uno, de tal forma que, es equivalente a truncar la señal sinc
cuando se multiplica por esta ventana en el dominio del tiempo discreto. La quinta
ventana, triang, debe su nombre precisamente a la figura geométrica que generan sus
amplitudes. La ventana tukey se caracteriza porque tiene una zona creciente seguida
de una zona constante y posteriormente una zona decreciente. Las otras tres venta-
nas que se seleccionaron en este ejemplo son muy similares entre sí, con un cambio
de amplitud suave (sin saltos abruptos). Tanto la ventana blackmann como la hanning
tienen su primera y última muestra de amplitud igual a cero, a diferencia de la ven-
tana hamming que inicia y termina con una amplitud mayor a cero. Adicionalmente,
de estas tres ventanas la más “angosta” es la ventana blackman.

65PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 39. Ejemplos de ventanas, M=50: a) boxcar, b) hamming, c) blackman, d) hanning, e)
triangular, f) tukey.

Ahora, compararemos la respuesta en frecuencia de las seis ventanas. Para ello, uti-
lizaremos el siguiente código en Python:

from scipy.fft import fft, fftshift
import numpy as np
plt.figure()
window = window1 # se reemplaza para cada una de las ventanas dise-
ñadas previamente
A1 = fft(window, 2048) / (len(window)/2.0)
freq1 = np.linspace(-0.5, 0.5, len(A1))
freq1 = freq1 * 2
response1 = np.abs(fftshift(A1 / abs(A1).max()))
response1 = 20 * np.log10(np.maximum(response1, 1e-10))
from pylab import rcParams
rcParams[‘figure.figsize’] = 10, 6
N = len(freq1)//2
plt.plot(freq1[N+1:2*N], response1[N+1:2*N])

Obteniendo los siguientes espectros:

66 Dora Maria Ballesteros, Diego Renza

Figura 40. Respuesta en frecuencia para M=50 de las ventanas: a) boxcar, b) hamming, c)
blackman, d) hanning, e) triangular, f) tukey.

Como era de esperarse, los espectros obtenidos de las seis ventanas diseñadas
difieren entre sí. Empezaremos comentando el espectro de boxcar, el cual presenta
la menor atenuación en la banda de rechazo, oscilando su ganancia entre -30 dB a
-60dB, mientras que otras ventanas como la blackman llegan a tener hasta -160 dB
de ganancia. En el caso de la ventana hamming la ganancia oscila entre -50dB y -90dB.

Como paso final, diseñaremos el filtro FIR con el método de ventaneo. Para ello, de-
bemos seleccionar la ventana por la cual multiplicaremos en el dominio del tiempo
la señal sinc; mientras que, en el dominio de la frecuencia se realizará la convolución
de los dos espectros. En Python utilizamos la instrucción signal.firwin de la
librería scipy para el diseño del filtro FIR por el método de ventaneo.

Los filtros que diseñaremos a continuación son pasa-bajos. Utilizaremos fs = 8000 [Hz],
y entonces por Nyquist la máxima frecuencia de corte es fcmax = fs⁄2 = 4000[Hz]. Se-
leccionaremos como frecuencia de corte fc = 2000[Hz], obteniendo que fc = fcmax /2.

67PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Importe de librerías:

from scipy import signal
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import math

Parámetros de diseño (M, frecuencia y tipo de filtro):

M=50 # el filtro es de orden M-1
f=2000
pass_zero=True # True corresponde a un filtro pasabajo.

Diseño del filtro FIR con la ventana boxcar y visualización de la respuesta en fre-
cuencia:

h1= signal.firwin(M, f, window=’boxcar’, fs=8000, pass_zero=pass_
zero)
w1, v1 = signal.freqz(h1,1)

Diseño del filtro FIR con la ventana hamming y visualización de la respuesta en fre-
cuencia:

h2= signal.firwin(M, f, window=’hamming’, fs=8000, pass_zero=pass_
zero)

w2, v2 = signal.freqz(h2, 1)

Diseño del filtro FIR con la ventana blackman y visualización de la respuesta en
frecuencia:

h3= signal.firwin(M, f, window=’blackman’, fs=8000, pass_zero=pass_
zero)

w3, v3 = signal.freqz(h3, 1)

Diseño del filtro FIR con la ventana hanning y visualización de la respuesta en fre-
cuencia:

h4= signal.firwin(M, f, window=’hann’, fs=8000, pass_zero=pass_zero)

w4, v4 = signal.freqz(h4, 1)

Diseño del filtro FIR con la ventana triangular y visualización de la respuesta en
frecuencia:

h5= signal.firwin(M, f, window=’triang’, fs=8000, pass_zero=pass_
zero)

w5, v5 = signal.freqz(h5, 1)

68 Dora Maria Ballesteros, Diego Renza

Diseño del filtro FIR con la ventana tukey y visualización de la respuesta en frecuen-
cia:

h6= signal.firwin(M, f, 200, window=’tukey’, fs=8000)
w6, v6 = signal.freqz(h6, 1)

Primero dibujaremos la respuesta al impulso de los filtros, ĥ(n), (resultado de mul-
tiplicar en el dominio del tiempo la señal sinc por la ventana), y posteriormente, la
respuesta en frecuencia del filtro diseñado, Ĥ(ω), (resultado de convolucionar en
el dominio de la frecuencia la respuesta en frecuencia de la ventana con la del filtro
ideal).

Figura 41. Respuesta al impulso, ĥ(n), método de ventaneo, M=50: a) boxcar, b) hamming,
c) blackman, d) hanning, e) triangular, f) tukey.

Se utiliza el siguiente código para dibujar las seis respuestas al impulso de los filtros:

plt.stem(h) # h= h1, h2, … h6.

Al comparar las gráficas, se aprecia que las diferencias se ven más marcadas en los
primeros y últimos impulsos de ĥ(n), es decir, en las amplitudes más pequeñas de
la señal sinc.

Posteriormente, dibujaremos la respuesta en frecuencia de los seis filtros FIR, utili-
zando escala logarítmica:

69PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

plt.plot(w, 20*np.log10(np.abs(v))) # w= w1, w2, … w6. v= v1, v2, … v6.

Y obtenemos los siguientes espectros:

Figura 42. Respuesta en frecuencia de filtros FIR diseñados con ventanas (escala logarítmi-
ca), M=50: a) boxcar, b) hamming, c) blackman, d) hanning, e) triangular, f) tukey.

Como se observa, el comportamiento de la respuesta en frecuencia del filtro en la
banda de paso cambia de forma significativa entre las ventanas seleccionadas para su
diseño. Las mayores atenuaciones (ganancias alrededor de -100dB) se obtienen con
las ventanas hamming, blackman, y hanning.

Finalmente, visualizaremos la respuesta en frecuencia de los filtros, pero ahora en
escala lineal. El objetivo es poder determinar de forma gráfica la frecuencia de corte
del filtro digital obtenido.

Para ello, utilizaremos la siguiente instrucción para cada filtro:

plt.plot(w, (np.abs(v))) # w= w1, w2, … w6. v= v1, v2, … v6.

Y obtenemos las siguientes gráficas:

70 Dora Maria Ballesteros, Diego Renza

Figura 43. Respuesta en frecuencia de filtros FIR diseñados con ventanas (escala lineal),
M=50: a) boxcar, b) hamming, c) blackman, d) hanning, e) triangular, f) tukey.

Podemos observar que tanto en la banda de paso como en la de rechazo, el filtro
que presenta mayores ondulaciones es boxcar (debido al fenómeno de Gibbs que
vimos previamente). En segundo lugar, se encuentra el filtro diseñado con la ventana
tukey. Los filtros con “mejor” comportamiento, de los evaluados en esta sección,
son hamming, blackman y hanning. En el caso del filtro diseñado con la ventana triang,
su respuesta no es tan “plana” en las bandas de paso y de rechazo.

Como paso final, calcularemos la frecuencia de corte del filtro digital y la compara-
remos con la frecuencia de corte teórica. Como se mencionó en el Capítulo 2, se
debe encontrar entre [0 π] (en unidades rad/muestra). Como este ejemplo utilizó
fc = fcmax ⁄2, entonces la frecuencia de corte teórica del filtro digital es de π ⁄ 2.

Con el siguiente código en Python encontramos la frecuencia de corte experimen-
tal (ωcd) de los seis filtros FIR diseñados con las ventanas boxcar, hamming, blackman,
hanning, triangular, y tukey.

71PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

pi = math.pi
x = np.where(abs(v) > 0.707) # Para v= v1, v2, … v6.
wcd = np.max(x)*pi/len(w) # Para w= w1, w2, … w6.

print(wcd)

Y se obtienen los siguientes resultados:

Ventana boxcar hamming blackman hanning triangular tukey

ωcd 1.5401 1.5155 1.5033 1.5094 1.5155 1.5401

Los cuales son cercanos al valor teórico, correspondiente a 1.5707 [rad⁄muestra].

4.6. 	 CEROS EN FILTROS FIR
Partiendo de la función de transferencia del filtro digital, H(z), que estudiamos en el
Capítulo 2 de este libro, tenemos que un filtro FIR se expresa de la siguiente forma:

Donde M -1 es el orden del filtro. Entonces, la cantidad de términos de H(z) dife-
rentes de cero es M. Esta función de transferencia también se puede escribir como
una multiplicatoria (en lugar de una sumatoria) de M -1 términos, a partir de la
factorización del polinomio de z, así:

Por ejemplo, vamos a suponer que la función de transferencia del filtro FIR es
H(z) = 1 - 2z-1 + z-2, entonces factorizamos el polinomio de segundo orden obte-
niendo dos términos, así, H(z) = (1 - z-1)(1 - z-1). Cada uno de los términos repre-
senta las raíces del numerador de la función de transferencia, y se conocen como
los ceros del filtro digital. Es decir, cada término se iguala a cero y se despeja z
para obtener los ceros del filtro.

Para este ejercicio, se tienen dos ceros en la misma posición, ubicados en:

(1 - z-1) = 0 ∴ 1 = z-1 ∴ z = 1

Es decir, c1=1, c2 = 1.

Se resalta que en el caso de los filtros FIR, solamente se tienen raíces
en el numerador, es decir, los filtros FIR son sistemas solo-ceros.

En el capítulo 5 se generalizará este concepto a filtros IIR.

A medida que avancemos en el libro conoceremos el “significado” de los ceros de
un filtro digital. Por ahora, graficaremos su posición en el plano z, apoyándonos en
lenguaje de programación Python.

72 Dora Maria Ballesteros, Diego Renza

Partiremos con el filtro de promedio que estudiamos en el Capítulo 2 y seguiremos
con el método de ventaneo.

Gráfica polos y ceros filtro de promedio:

Lo primero que vamos a realizar es definir el vector de amplitudes del filtro
de promedio utilizando np.ones. Posteriormente, calculamos los ceros (z),
polos (p) y ganancia (k), de la función de transferencia del filtro, por medio
de signal.tf2zpk.Finalmente, dibujamos el círculo unitario en el plano z
con plt.plot(np.cos(theta),np.sin(theta)), y ubicamos los ce-
ros con plt.scatter(np.real(z1),np.imag(z1)). Se resalta que el
filtro de promedio no tiene polos, dado que es un filtro FIR. Este concepto se
explica con mayor detalle en el próximo capítulo.

El código completo en Python se presenta a continuación:

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from scipy import signal
import math

M = 2 # M = 2, 3, 4, 5.
b = np.ones(M)/(M)
z, p, k = signal.tf2zpk(b,1)
print(len(z))
theta = np.linspace(-math.pi,math.pi,201)
plt.rcParams[“figure.figsize”] = (7,7)
plt.plot(np.cos(theta),np.sin(theta))
plt.scatter(np.real(z),np.imag(z))
plt.show()

Y se obtienen las siguientes gráficas:

Figura 44. Gráfica de polos y ceros filtro de promedio, para: a) M=2, b) M=3, c) M=4, d) M=5.

73PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

De la figura anterior, se pueden enumerar las siguientes conclusiones:

•	 Todos los ceros de un filtro de promedio se ubican sobre el círculo
unitario.

•	 La cantidad de ceros es igual a M - 1. Es decir, se tienen tantos
ceros como el orden del filtro.

•	 Cuando el valor de M - 1. es par, cada cero tiene su conjugado, es
decir, comparten el mismo valor de la parte real y con signo con-
trario en la parte imaginaria.

•	 Cuando el valor de M - 1. es impar, se tiene un cero en z = -1.

•	 Los ceros se concentran en la parte izquierda de la gráfica, como
“alejándose” de z = -1

Gráfica polos y ceros filtro diseñado por el método de ventaneo:

Para este método de diseño, la gráfica de polos y ceros es distinta a la obtenida con
el filtro de promedio. Se sugiere utilizar M par en filtros pasa-bajos, y M impar en
filtros pasa-altos.

Para filtro pasa-bajos y ventana hamming, utilizamos el siguiente código en Python:

from scipy import signal
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import math
M=2 # hacer M = 2, 4, 6, 8
f1=2000
pass_zero=True # Si es True corresponde a un filtro pasa-bajo.
h1= signal.firwin(M, f1, window=’hamming’, fs=8000, pass_zero=pass_zero)
z1, p1, k1 = signal.tf2zpk(h1,1)
theta = np.linspace(-math.pi,math.pi,201)
plt.rcParams[“figure.figsize”] = (7,7)
plt.plot(np.cos(theta),np.sin(theta))
plt.scatter(np.real(z1),np.imag(z1))
plt.show()

74 Dora Maria Ballesteros, Diego Renza

Figura 45. Gráfica de polos y ceros, filtro pasa-bajos diseñado con la ventana hamming: a)
M=2, b) M=4, c) M=6, d) M=8.

En este caso, se obtienen ceros por fuera del círculo unitario, principalmente en va-
lores negativos de z, pero eventualmente también en valores positivos. No obstante,
se aprecia que uno de los ceros se encuentra en z = -1, dado que se diseñó un filtro
pasa-bajos.

A continuación, vamos a graficar los polos y ceros, pero ahora de un filtro pasa-altos.

M=4
f1=2000
pass_zero=False # Si es False a un filtro pasa alto
h1= signal.firwin(M, f1, window=’hamming’, fs=8000, pass_zero=pass_zero)
z1, p1, k1 = signal.tf2zpk(h1,1)
theta = np.linspace(-math.pi,math.pi,201)
plt.rcParams[“figure.figsize”] = (7,7)
plt.plot(np.cos(theta),np.sin(theta))
plt.scatter(np.real(z1),np.imag(z1))
plt.show()

75PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 46. Gráfica de polos y ceros, filtro pasa-altos diseñado con la ventana hamming: a)
M=3, b) M=7, c) M=11, d) M=15.

La principal diferencia en el comportamiento de la gráfica de polos y ceros entre
filtros pasa-bajos y pasa-altos, es que en los últimos los ceros se concentran alrede-
dor de z = 1 (ver Figura 46), mientras que en los primeros se concentran alrededor
de z = -1. Esta observación es válida independiente del método de diseño del filtro
y/o de la ventana seleccionada. 

