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CAPITULO 3.

Mis primeros filrros digitales

Sé que en este punto del libro ya querras conocer ejemplos concretos de filtros
digitales y su efecto en senales | D (uni-dimensionales). Este Capitulo esta disenado
precisamente para que empieces a filtrar senales ID con filtros muy sencillos, co-
nocidos como filtros de promedio. Adicionalmente, conoceras su contraparte |IR
denominada Integrador Leaky.

Al finalizar el capitulo, deberas estar en capacidad de:

l. Disenar filtros pasa-bajos para senales |D, especificamente filtros de pro-

medio.

2. Filtrar senales I1D con filtros de promedio.

3. Explicar el comportamiento en frecuencia de los filtros de promedio, tanto
para valores de M par como impar.

4. Explicar las diferencias entre el filtro de promedio y el filtro Integrador
Leaky.

3.1. INTRODUCCION AL FILTRO DE PROMEDIO

Para entender en qué consiste el filtro de promedio, es necesario que previamente
recordemos como se caracteriza un sistema Lineal e Invariante en el Tiempo (LTI).
Especificamente, la salida del sistema, y[n], se encuentra calculando la convolucién
entre la senal de entrada, x[n], y la respuesta al impulso, h[n].

Es decir, si el sistema es LTI, se cumple que:

y[n] =x[n]@®h[n] = Z‘,’f:_w x[k]h[n - k] Ecuacion 12

Adicionalmente, es necesario recordar en qué consiste convolucionar x[n] con un
impulso ubicado en el origen, o desplazado, por ejemplo:

x[n] @ 8[n] = x[n],
xn] @ &n-1]=x[n-1],
xn] Q 6[n-2]=x[n-2],
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xn] @ 6[n+1]=x[n+1],
x[n] ® §[n+2]=x[n+2]
Entonces,
x[n] @ 6[n-kj=x[n-k] keZ Ecuacion 13

Si unimos el concepto de la Ecuacién 10 con el de la Ecuacion | I, podremos identi-
ficar que si y[n] = x[n - k], entonces su respuesta al impulso es h/n] = §[n - k].

De forma general,
M-1
siy[n] = Zkzox[n -kJ,

M-1
se tiene que h["FZk:o 6[n-KJ.

Ahora bien, si a la respuesta al impulso obtenida anteriormente la escalamos por el
factor 1M, obtenemos un filtro de promedio causal.

En resumen, un filtro de promedio (MAF: Moving Average Filter) es un sistema
LTI cuya respuesta al impulso contiene M impulsos consecutivos de amplitud
I/, que tipicamente inicia en el origen y termina en M-I, donde M-I corres-
ponde al orden del filtro,y M es la cantidad de términos (pasados, presente
y/o futuros) de la senal de entrada. El minimo valor de M=2 (es decir, filtro de
primer orden).

La respuesta al impulso de los filtros en promedio causales se define como:
M-1
h[n] = ﬁ Y o S[n-K] Ecuacién 14
Cuya funcion de transferencia, es:

H(Z]:—l\l/[ Z,Z;) zk Ecuacién 15

Graficamente, la respuesta al impulso de un filtro de promedio causal con M=11,
es:

Figura 16. Respuesta al impulso de un filtro de promedio causal, M=11I.
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La cual se puede dibujar con el siguiente codigo en Python:

import numpy as np

import matplotlib

import matplotlib.pyplot as plt

M=11

n = np.linspace(0,M-1,M)

x = np.ones ([M]) /M

plt.stem(n,x, use line collection="True”)

Este filtro de promedio también puede ser simétrico respecto al origen. En ese
caso, tipicamente se trabaja con M impar, cuya respuesta al impulso se define asi:
1 M1 .
h[n] = [ Lak=01-02) o[n - k] Ecuacion 16
Suponiendo que M=11, entonces:

h[n]:ll1 Y 8-k

k=-5

El cual corresponde a un filtro de promedio no causal (Figura 17). Entonces,
para calcular la salida del sistema es necesario conocer la entrada en el tiempo
actual, cinco valores pasados y cinco valores futuros del tiempo actual. Es decir,
y[n]=1/11{x[n] +x[n-1]+x[n-2] +x[n-3] +x[n-4] +x[n-5] +x[n+ 1] +x[n +
2] +x[n + 3] +x[n + 4] + x[n + 5]}.

Figura I7. Respuesta al impulso de un filtro de promedio no causal, M=11.

Aungque el orden del filtro de la Figura 16 es el mismo del de la Figura 17, la principal
diferencia radica en que en el primero se puede calcular la salida en tiempo real,
mientras que, en el segundo es necesario que previamente se haya almacenado (o
transmitido) la senal de entrada.

3.2. EFECTO DEL FILTRO DE PROMEDIO

El efecto del filtro de promedio en una senal |D consiste en suavizarla, es decir,
reducir los rizos que pueda contener la senal, manteniendo su forma. En otras pala-
bras, el filtro de promedio actia como un filtro pasa-bajos.
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Para ilustrar este efecto, primero crearemos una senal senoidal a la cual le adiciona-
remos ruido, y posteriormente la filtraremos con filtros de promedio de diferente
orden.

El cédigo en Python paso a paso es el siguiente:

Paso 1: importar librerias de trabajo

import numpy as np

import scipy as sp

import matplotlib.pyplot as plt
from scipy import signal

import math

Paso 2: generar una sefial sin ruido

step = 0.001

t = np.arange (0,2, step)

fs = 1 / step

print (fs)

frecuencia = 2 # Hz

frad = frecuencia * 2 * math.pi
x1 = np.sin(frad*t)

plt.plot (t,x1)

plt.title(‘'sefial sin ruido’)

La senal que se obtiene es una senal senoidal de 2 segundos de duracion, con
f=2Hz f,=1kHz,yamplitud en el rango [-1 1] (Ver Figura |8). Recorde-
mos que utilizamos plt.plot para que tenga apariencia de senal continua,
aunque realmente corresponde a una senal discreta.

Figura 18.Senal senoidal sin ruido.

Paso 3: generar ruido aleatorio

samples = len(x1)
An= 0.5
noise = An*np.random.rand (samples) - An/2

plt.plot (t,noise)
plt.title(‘Ruido’)

En este paso se obtiene una senal que corresponde a ruido de 2 segundos de du-
racion, cuya amplitud se encuentra en el rango [-0.25 0.25)]. (Ver Figura 19).
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Figura 19.Ruido aleatorio.

Paso 4: sumar la sefial senoidal con la sefial de ruido

xnoise = x1 + noise
plt.plot (t,xnoise)

plt.title(‘'Sefial con ruido’)

La nueva senal (Figura 20) corresponde a una senal senoidal con ruido de fondo,
conservando la frecuencia fundamental de la senal de la Figura 18. No obstante, la
amplitud esta ahora en el rango [-1.25 1.25)].

Figura 20. Senal senoidal con ruido de fondo.

Paso 5: aplicacién de filtro de promedio (M=7, 11, y 111)

a =1

M =7

b7 = np.ones ([M]) /M

y7 = signal.filtfilt (b7, a, =xnoise)
M =11

bll = np.ones([M])/M

yll = signal.filtfilt (bll, a, xnoise)
M =111

blll = np.ones([M])/M
y1l1ll = signal.filtfilt (b111, a, =xnoise)

# Se grafican los resultados
plt.rcParams|[“figure.figsize”] = (20,10)
plt.subplot(2,2,1)

plt.plot (t,xnoise)

plt.title(‘a)’)

plt.subplot(2,2,2)

plt.plot(t,y7)
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plt.title (‘b))
plt.subplot (2,2, 3)
plt.plot(t,yll)
plt.title(‘c)’)
plt.subplot(2,2,4)
plt.plot(t,yl1ll)
plt.title('d)’)
plt.show ()

Se utiliza la instruccion filtfilt de la libreria signal para aplicar el filtro previamente
disefado (con np.ones ( [M] ) /M) a la senal xnoise. Esta instruccion permite filtrar
senales ID con filtros FIR o IRR. En el caso de filtros FIR, como corresponde al
filtro de promedio, es necesario trabajar con a = 1.

Como resultado del cédigo anterior se obtienen cuatro sub-graficas, las cuales se
presentan en la Figura 21.

Figura 21.Resultado de filtrar una senal senoidal ruidosa con un filtro de promedio: a) sefal
de entrada, b) senal filtrada con M=7, c) sefal filtrada con M=11, d) sefal filtrada con M=111.

Al comparar los resultados obtenidos con filtros de promedio con diferentes M, se
aprecia que a medida que M aumenta el efecto de suavizado es mayor, es decir, se
reduce en mayor medida el rizado (ruido de fondo) de la senal. No obstante, como
veremos en la siguiente seccion, no se recomienda aumentar abruptamente el orden
del filtro, porque se puede producir un efecto no deseado al eliminar componentes
de frecuencia de la senal que son importantes. Se sugiere que el estudiante utilice
un M alto (por ejemplo, M=501), y obtenga sus propias conclusiones del efecto del
filtro sobre la senal.

3.3. RESPUESTA EN FRECUENCIA DEL FILTRO DE PROMEDIO

En esta seccion nos centraremos en conocer y comprender el impacto que tiene
el valor de M en la respuesta en frecuencia del filtro de promedio. El filtro MAF es
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un filtro pasa-bajos cuya frecuencia de corte disminuye a medida que aumenta el
valor de M. A diferencia de los filtros analogos, en los que la frecuencia de corte la
expresamos (tipicamente) en Hz, en el caso de los filtros digitales, esta frecuencia
se encuentra normalizada en el rango [0 1) ], por ejemplo 0.2, con unidades
[radmuestra]. El rango total de la respuesta en frecuencia del filtro digital (bilateral)
corresponde a [-m  m)].

Como primer paso, vamos a reescribir la respuesta al impulso del filtro de prome-
dio, de la forma:

h/n] =u[n] - ufn-M] Ecuacion |7
M

donde M - 1 es el orden del filtro. Este resultado es equivalente al obtenido en la
Ecuacion 14.

Como segundo paso, vamos a calcular la DTFT (Transformada de Fourier de Tiem-
po Discreto) de h[n], es decir:

Obteniendo que,

Cuando graficamos la magnitud de la respuesta en frecuencia del filtro de promedio,
encontramos que presenta un comportamiento especial, que lo podemos resumir
como:

*  Todos los filtros de promedio tienen un lobulo principal alrededor de w = 0,
y varios l6bulos secundarios que inician en -1 y terminan en .

*  La amplitud de los I6bulos secundarios disminuye a medida que se alejan de
w=0. Cada lobulo secundario es mas pequeno que su antecesor (entre [0
m]) y existe un efecto espejo con las frecuencias negativas.

*  La cantidad de I6bulos en el rango [-m 7] es igual a M-1. Hay un l6bulo
principal y M-2 |6bulos secundarios.

*  Si el filtro tiene un M par, el primer “cruce por cero” y el ultimo “cruce por
cero” ocurren en las frecuencias -7 y 1, respectivamente. En caso contrario, si
M es impar, en esas frecuencias no existira cruce por cero.

*  En todos los casos, los cruces por cero se encuentran ubicados en 2k/M. El
rango de kes [1 (M-1))2] para M impar,y [I MZ2] para M par.
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Nota: se dibuja la magnitud de la respuesta en frecuencia del filtro, por lo cual no
tendra valores negativos y formalmente no existiran los “cruces por cero”. Sin
embargo, si existen valores en los cuales la amplitud ha disminuido, llega a cero, y
vuelve a aumentar, los consideraremos como “cruces por cero”.

Por ejemplo, para M = 7, el filtro de promedio tiene un Iébulo principal y cinco 16-
bulos secundarios, de los cuales dos I6bulos y medio (secundarios) se encuentran
en las frecuencias positivas (Ver Figura 22). Dado que M es impar, el dltimo cruce
por cero en las frecuencias positivas (al igual que el primer cruce por cero en las
frecuencias negativas) no ocurre en w=Tr.

Figura 22. Magnitud de la respuesta en frecuencia de un filtro de promedio, M=7.

Para obtener la grafica de la magnitud de la respuesta en frecuencia del filtro MAF
utilizamos el siguiente codigo en Python:

from scipy import signal

import numpy as np

from scipy import signal

import matplotlib.pyplot as plt
import math

M =7

M7 = np.ones ([M])/M

a =1

wl, vl = signal.fregz (M7, a)
plt.rcParams|[“figure.figsize”] = (14,8)
ax = plt.subplot(2, 1, 1)

plt.plot (wl, np.abs(vl))

plt.title (‘Respuesta en frecuencia filtro digital de promedio, M=7")

La instruccion signal. freqgz de lalibreria de scipy de Python permite graficar la
respuesta en frecuencia de filtros digitales, tanto FIR como IIR. Las entradas de esta
instrucciéon corresponden a los coeficientes de los polinomios tanto del numerador
como del denominador de la funcion de transferencia del filtro digital. En el caso
del filtro MAF, por ser un filtro FIR, el denominador es una constante igual a uno, y
entonces, a la entrada “a” de la instrucciéon signal . freqgz le asignamos el valor
de uno. El resultado corresponde al vector de frecuencias normalizadas, w1, y al
vector de amplitudes, v1. Con la instruccion np.abs (v1) se calcula la magnitud
de la respuesta en frecuencia del filtro digital.
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Podemos obtener cada uno de los cruces por cero del filtro de promedio, con el
siguiente codigo en lenguaje Python:

M=7

# k=1, entonces

k=1

wcl= 2*math.pi/M

print (“frecuencia cruce por cero 1:”, wcl)

# k=2, entonces

k=2
wc2= 2*math.pi*k/M
print (“frecuencia cruce por cero 2:”, wc2)

# k=3, entonces

k=3

wc3= 2*math.pi*k/M

print (“frecuencia cruce por cero 3:”, wc3)

y obtendriamos:

frecuencia cruce por cero 1l: 0.8975979010256552
frecuencia cruce por cero 2: 1.7951958020513104
frecuencia cruce por cero 3: 2.6927937030769655

Cuando el valor de M es alto, se recomienda utilizar una estructura anidada (por
ejemplo, ciclo for) para encontrar los cruces por cero del filtro digital, asi:

M =7
for k in range(1l,int ((M-1)/2)+1):
wc= 2*3.14*k/M
print (“frecuencia de cruce por cero”,k, “:”, wc)

Supongamos ahora que nuestro filtro trabaja con M = 31, jcuantos Iébulos secun-
darios tendra? La respuesta es 29 I6bulos secundarios, por lo que, de forma similar
al caso anterior no se encontraran cruces por cero en -7, ni en 7. La grafica se
presenta en la Figura 23.

Figura 23. Magnitud de la respuesta en frecuencia de un filtro de promedio, M=31.

Independiente del orden del filtro, tendremos que en w = 0 la amplitud es igual a
uno. Se aprecia que de forma similar a la grafica de la Figura 22, el dltimo l6bulo
queda a “la mitad”, es decir, no llega a cero.
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Los cruces por cero los obtenemos con el siguiente codigo en Python:

M = 31
for k in range(1l,int ((M-1)/2)+1):
we= 2*3.14*k/M

print (“frecuencia de cruce por cero”,k, “:”, wc)
frecuencia de cruce por cero 1: 0.20258064516129032
frecuencia de cruce por cero 2: 0.40516129032258064
frecuencia de cruce por cero 3: 0.607741935483871
frecuencia de cruce por cero 4: 0.8103225806451613
frecuencia de cruce por cero 5: 1.0129032258064516
frecuencia de cruce por cero 6: 1.215483870967742
frecuencia de cruce por cero 7: 1.4180645161290324
frecuencia de cruce por cero 8: 1.6206451612903225
frecuencia de cruce por cero 9: 1.823225806451613
frecuencia de cruce por cero 10: 2.0258064516129033
frecuencia de cruce por cero 11: 2.2283870967741937
frecuencia de cruce por cero 12: 2.430967741935484
frecuencia de cruce por cero 13: 2.6335483870967744
frecuencia de cruce por cero 14: 2.836129032258065
frecuencia de cruce por cero 15: 3.0387096774193547

Como tercer ejemplo, utilizaremos un filtro con M par. Especificamente, si M = 8,
obtendremos una grifica que contiene tres I6bulos secundarios en las frecuencias
positivas, y el Gltimo cruce por cero ocurre exactamente en w = Tt (Ver Figura 24).

Figura 24. Magnitud de la respuesta en frecuencia de un filtro de promedio, M=8.

La respuesta en frecuencia se obtiene con el siguiente cédigo en Python:

from scipy import signal

M= 8

M8 = np.ones ([M])/M

a =1

wl, vl = signal.freqgz (M8, a)
plt.rcParams[“figure.figsize”] = (14,8)
ax = plt.subplot(2, 1, 1)
plt.plot(wl, np.abs(vl))

Y los cruces por cero, asi:

M = 8
for k in range(l,int ((M)/2)+1):
wc= 2*3.14*k/M
print (“frecuencia de cruce por cero”,k,”:”, wc)
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frecuencia de cruce por cero 1: 0.785
frecuencia de cruce por cero 2: 1.57
frecuencia de cruce por cero 3: 2.355
frecuencia de cruce por cero 4: 3.14

Finalmente, si comparamos la primera frecuencia de cruce por cero de los filtros
de promedio con M =7, M = 8,y M = 31, podemos concluir que a medida que M
aumenta, la frecuencia del primer cruce por cero disminuye (es decir, cuando utili-
zamos un orden de filtro alto, la frecuencia de corte es baja). No obstante, indepen-
diente del valor de M, el filtro de promedio se comporta como un filtro pasa-bajos.

3.4. FILTRO INTEGRADOR LEAKY

Este filtro tiene un comportamiento parecido al filtro de promedio (efecto pasa-ba-
jo) cuando M = 100. La ecuacion de entrada-salida se define como:

y[n] =Ay[n-1]+ (1-A)x[n] Ecuacién 20

Cuya relacion de A y M esta dada por:

yoM-1

7 Ecuacion 21

De tal forma que si M = 100, entonces A =99/100 = 0.99.
Por lo que, para este caso especifico la salida es:
y[n] =0.99y[n - 1] + 0.01x[n]

Esto significa que, para obtener la salida en el momento actual se conserva en
gran parte la salida del momento anterior, y solamente una pequenisima parte de
la entrada en el momento actual. Adicionalmente, si la entrada solo existe en un
momento especifico (ej. x[n] = §[n]), la salida sera distinta de cero a partir de ese
momento en adelante.

Veamos precisamente cual es la respuesta al impulso del filtro Leaky.
Reescribamos la ecuacién 18 de la siguiente forma:
y[n] =Ay[n - 1] + (1-1)6[n] Ecuacion 22

Y supongamos que el sistema inicia en n = 0, es decir que antes de ese momento
tanto la entrada como la salida eran de amplitud igual a cero.

Entonces,
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° y(0) = 0.99y(-1) + 0.018[n], que es equivalente a y(0) = 0.01, dado que
y(-1) =0,y x(0) = 0.01.

° y(1) =0.99y(0), que es equivalentea y(1) = 0.99 * 0.01, dado que x(1) = 0.

° y(2) = 0.99y(1), que es equivalente a y(2) = 0.99 * 0.99 * 0.01, dado que
x(2)=0.

. y(3) = 0.99y(2), que es equivalente a y(3) = 0.99 * 0.99 * 0.99 = 0.01,
dado que x(3) = 0.

° ... y(k)=0.99y(k-1), que es equivalente a y(k) = 0.99"% 0.01.
De forma general, la respuesta al impulso del Filtro Leaky se expresa como:
h[n]=2A"(1-2) paran=0 Ecuacion 23

Examinando la ecuacion 23 podemos concluir que este filtro es de respuesta al
impulso infinita, dado que, a partir de n = 0, las amplitudes de h[n] seran distintas
de cero.

A continuacion, dibujaremos la ecuacion de entrada-salida, utilizando un diagrama
de bloques:

Figura 25. Diagrama de bloques filtro Leaky.

Para obtener la salida con este tipo de filtros, se necesita una unidad de retardo, un
sumador y dos multiplicadores, independiente de M.

Ahora bien, dibujemos el diagrama de bloques para un filtro de promedio con
M =100,y comparemos el uso de recursos.

Figura 26. Diagrama de bloques filtro de promedio, M=100.
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En este caso, se necesitan 99 unidades de retardo, un sumador y un multiplicador.
Es claro que la cantidad de unidades de retardo es significativamente mayor que en
el filtro Leaky.

Lo que significa que si se quiere implementar un filtro que promedie el comporta-
miento de la sefal de entrada en las Ultimas 100 o 1000 muestras (por ejemplo), es
mas eficiente a nivel computacional utilizar una estructura como la de la Figura 25,
que como de la Figura 26.

3.5. GENERALIDADES DE LOS FILTROS DIGITALES

Iniciaremos este subcapitulo de generalidades de los filtros digitales, clasificandolos
en relacion con su respuesta al impulso. Primero en términos de duracion, y segun-
do en términos de computo. Posteriormente, revisaremos la definicion de estabili-
dad de los filtros digitales, tomando como ejemplo el filtro de promedio y el Leaky.

Clasificacion de los filtros digitales:

Si la respuesta al impulso del filtro es de duracion finita, decimos que es FIR.
En caso contrario, decimos que el filtro es lIR.

Por otro lado, un filtro puede ser causal o no causal. Un filtro es causal si su
salida depende de la entrada en el mismo valor de tiempo (discreto) y/o de
valores pasados de tiempo.Y es no causal, si la salida depende de valores futu-
ros de la senal de entrada. Un filtro causal se puede ejecutar en tiempo real,
es decir, que a medida que ingresa la entrada al sistema se calcula su salida.
Mientras que, en filtros no causales, necesitamos conocer toda la senal de
entrada para calcular la salida del sistema.

Combinando las dos clasificaciones anteriores, se pueden tener filtros FIR
causales, FIR no causales, IIR causales e IIR no causales. Puedes revisar ejem-
plos de cada caso en el Capitulo 2.3.

Estabilidad de los filtros digitales:

Un filtro es estable si la salida del filtro es acotada para entradas acotadas. Es
decir, si se cumple con la siguiente condicién:

Sea |x[n]| <M, |y[n]| < P, para M,P < co. Entonces anh[n]l <L para L<c.

De tal forma que, TODOS los filtros FIR son estables. Por lo que, todos los filtros
de promedio son estables.

Vamos ahora a revisar la estabilidad en los filtros Leaky. Recordemos que su res-
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puesta al impulso es de la forma h[n] = A" (1 - A) para n = 0. Entonces es necesario
evaluar dos posibles escenarios, cuando |A| < 1y cuando || = 1.

Escenario I: |A| <1

En este caso, Z:):_m|h[n]| =|1-2] Z:loo [A"] = |1 - A|{A%+AT 427427442} es un
valor finito, dado que cada vez se suma un término mas pequeno que el anterior.

Por ejemplo, supongamos que A = 0.5, entonces |1 - A| Zi_mllﬂ =10.5{0.5°+ 0.5"

+0.5%+ 0.53+---+0.5°°} =05+025+ 0'1225 +0.0625+ _ % Entonces, el filtro IR

es estable.

Escenario 2: |A| =2 1

En este caso, Z:):_m|h[n]| =|1-2| Z:o:w [A"] = |1 - A[{A%+AT A% 427+ 42} es un
valor infinito, dado que cada vez se suma un término mas grande que el anterior.
Por ejemplo, supongamos que A = 2, entonces |1 - A| Zi_w|/1"| = |-1{2%+ 2"+ 2%+

23+---+2°°} =1+2+4+8+ 16+ -+ -0 .Entonces, el filtro lIR es inestable.

En resumen, algunos filtros IR son estables, y otros son inestables. En el caso
del filtro Leaky, es estable siempre y cuando se cumpla que |A| < 1.




