PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | '7'7|

CAPITULO 5.

Merodos de diseno de filrros IIR

En este quinto capitulo del libro abordaremos el diseho de filtros de respuesta al
impulso infinita (IIR), a partir del diseno de filtros analogos y aplicando mapeo entre
el dominio Laplaciano y el dominio Z.

Al finalizar el capitulo, deberas estar en capacidad de:

I Encontrar la TZ de senales de duracion finita e infinita, asi como su region
de convergencia.

2. Disenar filtros digitales aplicando Transformada Bilineal, con ayuda de Python
3. Disenar filtros Butterworth digitales, con ayuda de Python.
4. Encontrar la relacién entre la frecuencia de corte del filtro analogo con Ia

frecuencia de corte del filtro digital (o frecuencia de resonancia, en el caso
de filtros pasa-banda de banda angosta).

5. Explicar el comportamiento de polos y ceros en filtros IIR.

6. Filtrar senales ID con filtros IIR.

Una diferencia importante en el disefio de filtros digitales FIR con los lIR radica
en que los segundos se disehan a partir de un mapeo entre el dominio Laplaciano
y el dominio Z. Teniendo en cuenta que la funcion de transferencia de los filtros
analogos contiene un polinomio en el denominador dependiente de s, entonces, los
filtros digitales obtenidos por el mapeo entre estos dos dominios contendran en su
funcidn de transferencia un polinomio en el denominador dependiente de z. Por lo
tanto, con esta técnica de diseno, siempre se obtendran filtros IIR.

En este capitulo repasaremos algunos conceptos basicos de la TZ y posteriormente
abordaremos dos ecuaciones de mapeo entre los dominios Laplaciano y z, una co-
rrespondiente a la aproximacion en derivadas, y la otra, a la Transformada Bilineal.
Aunque en la practica la aproximacion en derivadas es un método que no se utiliza
por las limitaciones que tiene, permite entender el concepto de mapeo entre ambos
dominios y facilita comprender en qué consiste la Transformada Bilineal. Por esa
razoén, la incluiremos en este capitulo.

| 78| Dora Maria Ballesteros, Diego Renza

5.. CONCEPTOS BASICOS DELATZ

En el Capitulo 2.1 se presento una breve introduccién a la Transformada Z. En este
Capitulo abordaremos el concepto de Region de Convergencia (ROC) de 1aTZ de
la senal discreta, asi:

“La ROC es el conjunto de todos los valores de z para los cuales la TZ de
x[n] es finita, es decir, que X(z) converge a un valor”.

Si no se logra satisfacer la condicion anterior con ninglin valor de z, entonces se dice
que laTZ de la senal no existe.

A continuacién, aplicaremos el concepto de ROC a varios casos. Inicialmente para
sefales de duracion finita y posteriormente para senales de duracion infinita.

Caso |: senal de duracion finita causal.

Supongamos que x[n] = 6[n] + 26[n - 1] + §[n - 2]. Entonces, la TZ de la senal

es X(z) = z°+ 2z' + z2, 6 de forma equivalente, X(z) = 1 +%+%-

Ahora bien, ;existe algun valor o un conjunto de valores de z para los cuales
X(z) no sea finita? Especificamente, si z= 0 entonces X(z) = 1 +%+%2- —00,
es decir, X(z) no converge, y entonces ese valor queda por fuera de la ROC.

Por lo cual, la ROC de la senal se expresa asi:
ROC = todo plano z- {z = 0}.
Para z # 0 se tiene que X(2) es finita.
Caso 2: senal de duracion finita anti-causal

Utilizaremos la sefnal x[n] = §[n + 2] + 56[n + 1], cuya TZ es X(z) = z2+5z%.
Para este caso, cuando z = 0 se tiene que X(Z) es finita, y entonces hace parte
de su ROC. Analicemos entonces si para otro valor de z se tendria que X(z)
no es finita. Especificamente, si z = o0 se tiene que X(z) = 002+ 500° 00, por
lo cual se debe excluir este valor de la ROC, quedando expresada de la si-
guiente manera:

ROC = todo plano z - {z = o}.
Caso 3: senal de duracion infinita causal
Partiremos de la sefal
x[n] = a" u[n]

Para conocer su comportamiento, dibujaremos la sehal para algunos valores

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 79'

de n teniendo en cuenta que esta senal inicia en n = 0 y termina en n = o0.
En la Figura 47 se presenta un ejemplo de la senal para algunos valores de n
ya=1/2.

Figura 47. Gréfica de la sefal (1/2)" u[n].

De forma general,si 0 < a < 1 la senal es decreciente, pero si a> 0 es ento-
nes creciente. Si a es negativa, tendra un comportamiento oscilatorio (valores
positivos y negativos alternados).

El cédigo en Python para dibujar n muestras de la senal es:

import numpy as np

import matplotlib.pyplot as plt
a=0.5

n=>5
n= np.linspace (0, n-1, n)
X = a **n

plt.stem(n, x)

La TZ de esta senal es:
X(2) = a2’ + a'z! +a?z? + @73 + -+ a¥z

Teniendo en cuenta que la cantidad de términos de la expresién anterior es
infinita, nos apoyamos en la siguiente serie matematica:

1+A+A2+A3+-~-+A°°:-1%4- < |A]<1

De tal forma que, al comparar las dos ecuaciones anteriores encontramos
una similitud entre ellas cuando A=a/z. La ROC quedaria entonces como |o/
z| < 1, o de forma equivalente |z| > |«].

De tal forma que, podemos reescribir laTZ de la senal, asi:

Para el caso especifico de a = 0.5, se tiene que suTZ es:

| 80| Dora Maria Ballesteros, Diego Renza

Por lo cual, la ROC de esta senal causal de duracién infinita es el exterior
de un circulo de radio a.

Caso 4:senal de duracion infinita anti-causal
Partiremos de la senal

x[n] = -B"u[-n-1]

Esta senal existe desde n= -00 hasta n = -1. Para los demas valores de n, su
amplitud es cero. La siguiente figura presenta su comportamiento para algu-
nos valores de n, y con f§ = 2.

Figura 48. Grifica de la senal -(2)*n u[-n-1].

Se debe tener en cuenta que el signo negativo esta por fuera de la potencia n,
de tal forma que toda la amplitud de la senal se invierte. Ahora bien, si 5> 1,
entonces se tiene una sehal que disminuye en amplitud a medida que se aleja
del origen en valores negativos de n.

El cédigo en Python para dibujar n muestras de la senal es:

import numpy as np
import matplotlib.pyplot as plt

a=2

n=4

n= np.linspace(-n, -1, n)
X = —-(a **n)

plt.stem(n, x)

La TZ de esta senal es:

X(Z) - -{ﬁ'121+ ﬁ-zzz +ﬁ—3z3 F oot ﬁ-ooZoO}
De forma similar al caso anterior, nos apoyamos en la siguiente serie mate-
matica:
1+A+A%+ A%+ -+ A®= 11_,4 - A<l

Pasando el valor de | al lado derecho de la ecuacion, tenemos que:

A+A2+A3+--'+A°°=-1—1A--1 - |A]<I

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 81 |

Y resolviendo,

A+ A2+ A3 4ot A® = % N lA|<I
Finalmente, multiplicamos a ambos lados de la ecuacion por -1, obteniendo

que:

LA+ AR+ AR Ak A7 =A—f‘1 o |A|<I

La TZ de la sefal se parece a la serie anterior cuando A = z/B = f12.Y la ROC
quedaria como |fz| < 1, o de forma equivalente, |z| < |B].

Entonces, podemos reescribir la TZ de la senal, asi:
-1
X(z) = Bz
Biz-1
O de forma equivalente,

1 <
T < ROC:e<IB]

Para el caso especifico de § = 2, se tiene que suTZ es:

X(z)—l_;zl & ROC:|z| <2

Entonces, la ROC de esta senal anti-causal de duracion infinita es el interior de
un circulo de radio .

Caso 5:senal de duracién infinita por ambos lados de n
Partiremos de la senal
x[n] = a" u[n] - f"u[-n-1]
Para x,[n] = a" u[n], y x,[n] = -f"u[-n - 1], es decir que, x[n] = x,[n] + x* [n].

Teniendo en cuenta lo presentado en el Caso 3 y Caso 4 de este Capitulo, se tiene
que:

1 1
X(2) = —
(2) 1-az' 1-pz!

Con ROC: |z| > |a| N |z| < |B]

De tal forma que,laTZ 3 & > a. En caso contrario, A.

5.2. APROXIMACION EN DERIVADAS

El concepto que vamos a aplicar en esta subseccién y la siguiente es el de mapeo.
Pero jqué significa exactamente mapear dos dominios? Segun Britannica?, la defini-

3 Disponible en: https://www.britannica.com/science/mapping

| 82| Dora Maria Ballesteros, Diego Renza

cion de mapeo es “cualquier forma prescrita de asignar a cada objeto en un conjunto a
un objeto en particular en otro (o el mismo) conjunto”. Entonces, para nuestro caso, el
mapeo permite relacionar el dominio Laplaciano con el dominio z a través de una
funcion.

En el caso del método de aproximacion en derivadas, se mapea la funcion de trans-
ferencia H(s) con la funcion de transferencia H(z), correspondiente a la derivada. En
el dominio Laplaciano la funcion de transferencia de la derivada es H(s) = s, mien-
tras que en el dominio z es H(z) = (1 -z")/T, , donde T, corresponde al periodo
de muestreo del sistema (es decir, el espaciamiento entre muestras consecutivas,
sabiendo que T, = 1/f)).

La Figura 49 nos permite ilustrar el concepto de derivada. Supongamos que quere-

mos calcular la derivada de una senal discreta en un tiempo especifico n, denomina-

da m(n), la cual se define como el incremento en amplitud de la senal dividido en el

periodo de muestreo, T, de la forma:

x(n)-x(n-1)
Ts

Por ejemplo, para n = 7, tendremos que su derivada es m(7) = {x(7) - x(6)}/T, .

m(n) = Ecuacién 39

Entonces, si la salida del sistema es la derivada de la sefal de entrada, para todo valor
de n tendremos la siguiente ecuacion de entrada-salida:

_x[n]-x[n-1]
Ts

Ecuacion 40

Figura 49. Senal discreta: concepto de derivada.

Aplicando la TZ a cada uno de los términos de la ecuacién anterior y la propiedad
de desplazamiento de la TZ, tendremos que:

X(2) -z X(2) _X(z){1-z"}

Y(z) = E ion 41
(2) T T cuacio
De tal forma que la funcion de transferencia nos queda asi:

Y(z) _ {1 Z- 1}

X =H(z) = Ecuacién 42

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 83|

Relacionando las dos funciones de transferencia H(s) con la de H(Zz), obtenemos el
mapeo entre el dominio s y el dominio z:

Despejando z de la ecuacion anterior, obtenemos:

Finalmente, al reemplazar s = 7Q, obtendremos:

Entonces,

Donde Q corresponde a la frecuencia de corte del filtro analogo. Al variar Q en el
rango {-00, o} se obtiene una correspondencia en el plano z de un circulo de r =
0.5 y centro en z = 0.5. De tal forma que un filtro analogo estable (el cual tiene sus
polos en el semiplano izquierdo), se transforma en un filtro digital estable (el cual
tiene sus polos dentro del circulo unitario). La principal desventaja de este método
de diseno de filtros IR consiste en que la ubicacion de los polos en ese pequeno
circulo corresponde a frecuencias bajas. De tal forma que solamente se pueden

disefar filtros con valores de QT pequefos.

5.3. TRANSFORMADA BILINEAL

La Transformada Bilineal es una mejora del método de aproximacion en derivadas,
dado que se mapea todo el semi-plano izquierdo del dominio Laplaciano, aprove-
chando todo el interior del circulo unitario. Como consecuencia, se pueden disenar
filtros de cualquier frecuencia de corte, superando la limitacion que tenia el método
de aproximacién en derivadas.

La ecuacion que nos permite mapear ambos dominios es:

Con esta funcion de mapeo, todo el semiplano izquierdo en el dominio s se corres-
ponde con el interior del circulo unitario en el dominio z.

En el dominio Laplaciano, un filtro pasa bajo tiene un cero en s = 0. Cuando se
aplica la ecuacién 46, el cero del filtro digital queda ubicado en en z =-1.

Adicionalmente, la correspondencia entre la frecuencia de corte del filtro analogo

| 84| Dora Maria Ballesteros, Diego Renza

(Qq) con la del filtro digital (w,) no es lineal, sino una relacion de tipo tangencial,
dado por la ecuacion:

A partir de la ecuacion anterior, podemos encontrar la frecuencia de corte (o de
resonancia) del filtro digital a partir de la del filtro analogo, asi:

Como siguiente paso, necesitamos recordar las funciones de transferencia de filtros
analogos. Trabajaremos con filtros de segundo orden.

Se aclara que las frecuencias de los filtros andlogos de las funciones de transferencia
de la tabla anterior estan en unidades de [rad/seg].

Con el siguiente ejemplo se ilustra el método de diseno de filtro lIR con la Transfor-
mada Bilineal, apoyado en Python.

Ejemplo I: filtro pasa-altos

Se quiere disenar un filtro digital utilizando Transformada Bilineal, a partir de un
filtro andlogo pasa-alto,con Q.= 100[Hz],¢ =1, y G = 1. La frecuencia de muestreo,
f»es 10 veces la frecuencia de corte del filtro analogo.

El primer paso consiste en convertir la frecuencia de corte que inicialmente esta en
[Hz] en unidades [rad/seg]. Posteriormente, escribir la funcion de transferencia en
el dominio analogo, teniendo en cuenta el tipo de filtro, asi:

1*s?
2+ (2*1*100* 2 *m)s + (100 * 2 *)2

H(s) =

A partir de H(s) se escribe el siguiente codigo en Python:

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 85|

mport numpy as np

from scipy import signal

import matplotlib.pyplot as plt
f = 100

frad = 2*3.14*f

amort = 1

G =1

nums=np.array([G, 0, 0])
dens=np.array([l, 2*amort*frad, frad*frad])
fs=10 *f

ws, hs = signal.freqgs (nums, dens)

Del codigo anterior, fes la frecuencia de corte del filtro analogo en unidades [Hz], frad
es la frecuencia de corte del filtro analogo en unidades [rad/seg], amort es el factor
de amortiguamiento,y G es la ganancia del filtro. Adicionalmente, nums es el vector del
polinomio del numerador de H(s), dens es el vector del polinomio del denominador
de H(s),y fs es la frecuencia de muestreo del sistema.Teniendo en cuenta que ambos
polinomios (numerador y denominador) son de segundo orden, entonces cada vector
contiene tres valores, el primero asociado a s? el segundo a s' y el tercero a s°.

Con la instruccién signal.freqs se calcula la respuesta en frecuencia del filtro analo-
go. La salida ws corresponde al vector de frecuencias; mientras que, hs es el vector
de amplitudes de H(s).

Para graficar la respuesta en frecuencia, escribimos el siguiente codigo:

plt.plot (ws, (np.abs(hs)), label=r’S$|H(s)|S$")
plt.legend()

plt.xlabel (‘Frecuencia [rad/seg]’)

plt.ylabel (‘Magnitud’)

plt.title(‘Respuesta en frecuencia del filtro andlogo’)
plt.grid()

Obteniendo la siguiente grafica:

Figura 50. Respuesta en frecuencia filtro analogo pasa-alto, Qc=2001 [radseg].

Como siguiente paso, convertimos H(s) en H(z), aplicando Transformada Bilineal.
Para ello, utilizamos la instruccion *signal.bilinear y posteriormente creamos el sis-
tema LTI con la instruccion signal.diti. A continuacién, con signal.freqz calculamos

| 86| Dora Maria Ballesteros, Diego Renza

la respuesta en frecuencia del filtro digital (a partir de los vectores del numerador y
denominador de H(z)),y la graficamos.

filtz = signal.dlti(*signal.bilinear (nums, dens, fs))

wz, hz = signal.freqgz (filtz.num, filtz.den)
plt.plot(wz, (np.abs(hz)), label=r’S$|H(z)|$")
plt.legend()

plt.xlabel (‘Frecuencia normalizada [rad/muestral’)
plt.ylabel (‘Magnitud’)

plt.title(‘Respuesta en frecuencia del filtro digital’)
plt.grid()

Figura 51.Respuesta en frecuencia filtro digital pasa-alto, w = 0.6 [rad/muestra] ¢ = 1.

Teniendo en cuenta que ¢ = 1, entonces la frecuencia de corte corresponde a la
ganancia de 0.5. Al revisar la Figura anterior, este valor se encuentra en 0.6 [rad/
muestral, aproximadamente.

A nivel tedrico, calculamos la frecuencia de corte con el siguiente codigo:

wd =2*np.arctan (frad/ (fs*2))
wd

Obteniendo
0.608501664475969

Coincidiendo el valor tedrico con el encontrado a partir de la grafica del filtro
digital.

Por otro lado, podemos escribir la funcion de transferencia del filtro digital, a partir
de los vectores filtz.num y filtz.den.

Sabiendo que,

filtz.num

array ([0.57917428, -1.15834857, 0.57917428])

filtz.den

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 87|

array ([1. , -1.04414003, 0.2725571 1)

Entonces, escribimos H(z), partiendo de z° en el primer término del polinomio,
tanto del numerador como del denominador, obteniendo que:
H(Z) = 0.57917428 - 1.15834857z! + 0.57917428z*
1-1.04414003z* +0.2725571z*

Como siguiente paso, se calculan los ceros, polos y ganancia del filtro digital, utilizan-
do signal.tf2zpk,asi

z, p, k = signal.tf2zpk(filtz.num,filtz.den)
print (z)
print (p)
print (k)

Obteniendo:
[1. 1.]

[0.52207002 0.52207002]
0.5791742828084856

Finalmente, se grafican los polos y ceros del filtro digital:

theta = np.linspace(-np.pi,np.pi, 201)
plt.rcParams[“figure.figsize”] = (5,5)

sin (theta))

plt.plot (np.cos (theta),np.
np.imag(z), marker='0o")
np.

Y

plt.scatter (np.real (z)
plt.scatter (np.real (p)
plt.title (‘Gréafica polos

’
14
, imag (p), marker=’'x’")

ceros filtro digital’)

Figura 52. Grifica de polos y ceros del filtro digital pasa-alto, w =0.6 [rad/muestra].

A partir de la grafica anterior, se pueden extraer las siguientes conclusiones:

| 88| Dora Maria Ballesteros, Diego Renza

|.Si el filtro es pasa-alto, los dos ceros se ubican en z=1.

2.Los polos estan relacionados con la frecuencia de corte del filtro digital.

En este caso se ubican en el semicirculo derecho del plano z, dado que (w4
<m)/2.

Ejemplo 2: filtro pasa-bajos

Se quiere disenar un filtro digital utilizando Transformada Bilineal, a partir de un

filtro analogo pasa-bajo, con Q.= 100 [Hz], =0.707, y G=1. La frecuencia de mues-
treo es 4 veces la frecuencia de corte del filtro analogo.

El primer paso consiste en convertir la frecuencia de corte que inicialmente esta en
[Hz], en unidades [rad/seg]. Posteriormente, escribir la funcion de transferencia en
el dominio analogo, teniendo en cuenta el tipo de filtro, asi:

1* (100 * 2 * m)?
s+ (2*0.707 * 100 * 2 * m)s + (100 * 2 *m)?

H(s) =

A partir de H(s) se escribe el siguiente cédigo en Python:

import numpy as np

from scipy import signal

import matplotlib.pyplot as plt

f = 100

frad = 2*3.14*f

amort = 0.707

G =1

nums=np.array ([0, 0, G*frad*frad])
dens=np.array([l, 2*amort*frad, frad*frad])

ws, hs = signal.freqgs (nums, dens)
plt.plot (ws, (np.abs(hs)), label=r’S|H(s)|[$")
plt.legend()

plt.xlabel (‘Frecuencia [rad/seg]’)
plt.ylabel (‘Magnitud’)
plt.title(‘Respuesta en frecuencia del filtro andlogo’)

plt.grid()

Figura 53. Respuesta en frecuencia filtro analogo pasa-bajo, Q. = 2007 [[rad/seg].].

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 89'

Posteriormente, se utiliza la Transformada Bilineal para encontrar la funcion de
transferencia del filtro digital, con el siguiente codigo:

fs=4 *f

filtz = signal.dlti(*signal.bilinear (nums, dens, fs))
wz, hz = signal.freqgz (filtz.num, filtz.den)

plt.plot (wz, (np.abs(hz)), label=r’$|H(z)|$")
plt.legend()

plt.xlabel (‘Frecuencia normalizada [rad/muestra] ‘)
plt.ylabel (‘Magnitud’)

plt.title(‘Respuesta en frecuencia del filtro digital’)
plt.grid()

Obteniendo,

Figura 54. Respuesta en frecuencia filtro digital pasa-bajo, wq = 0.133 [radMmuestra], ¢ = 0.707.

La ganancia en la frecuencia de corte es 0.707, dado que ¢ = 0.707. Entonces la fre-
cuencia de corte del filtro digital a partir de la grafica es:

X = np.where(abs(hz) > 0.707)
wcd = np.max(x)*3.14/len(wz)
print (wcd)

1.3246875

A nivel teodrico, la frecuencia de corte la encontramos con la siguiente ecuacion:

wd =2*np.arctan (frad/ (fs*2))
wd

1.3310548874510058

Los dos valores anteriores son muy cercanos, entonces el filtro quedo bien disena-
do.

Como siguiente paso, encontramos las constantes de los polinomios del numerador
y denominador de H(z), asi:

| filtz.num |

array([0.22603683, 0.45207366, 0.22603683])

| 90| Dora Maria Ballesteros, Diego Renza

| filtz.den

array ([1. , -0.28154419, 0.18569152])

Y escribimos la funcion de transferencia del filtro digital:

H(z) = 0.22603683 + 0.45207366z" + 0.22603683z2
1-0.28154419z*! + 0.18569152z2

Los ceros, polos y ganancia de H(z), la encontramos con el siguiente codigo:

z, p, k = signal.tf2zpk(filtz.num,filtz.den)
print(z)
print (p)
print (k)

Obteniendo:
[-1. -1.]

[0.1407721+40.4072772275 0.1407721-0.407277227]
0.22603683128439978

Es decir, el filtro tiene dos ceros en z = -1,y dos polos muy cercanos al eje vertical
del plano z.

La grafica de polos y ceros del filtro se obtiene con el siguiente cédigo:

theta = np.linspace(-np.pi,np.pi,201)
plt.rcParams [“igure.figsize”] = (5,5)
plt.plot (np.cos (theta),np.sin(theta))
plt.scatter(np.real(z),np.imag(z), marker='0’)
plt.scatter (np.real (p),np.imag(p), marker='x’")
plt.title(‘Gréafica polos y ceros filtro digital’)

Figura 55. Grafica de polos y ceros del filtro digital pasa-bajo, w =1.33 [radfmuestra].

A partir de la grafica anterior, se pueden extraer las siguientes conclusiones:

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 21 |

I. Si el filtro es pasa-bajo, los dos ceros se ubican en z = -1.

2. Los dos polos se ubican en el semicirculo derecho del plano z (muy cerca del
eje vertical), dado que la frecuencia de corte, w , es ligeramen te menor a 7/2.

Ejemplo 3: filtro pasa-banda de banda angosta

Se quiere disenar un filtro digital utilizando Transformada Bilineal, a partir de un

filtro andlogo pasa-banda, con Q =100 [Hz], @ =2,y G = 1. La frecuencia de mues-
treo es 3 veces la frecuencia de corte del filtro analogo.

El primer paso consiste en convertir la frecuencia de corte que inicialmente esta en
H(z) en unidades [rad4eg]. Posteriormente, escribir la funcion de transferencia en
el dominio analogo, teniendo en cuenta el tipo de filtro, asi:

1002 +m
W —

1
2
H(s) =
g +(M)s+[lﬂﬂa2:n‘]z

A partir de H(s) se escribe el siguiente cédigo en Python:

f =

Q =
G =

WS,
plt

import numpy as np
from scipy import signal
import matplotlib.pyplot as plt

frad = 2*3.14*f

nums=np.array ([0, G*frad/Q, 0])
dens=np.array([l, frad/Q, frad*frad])

.plot (ws, (np.abs(hs)), label=r’S$|H(s)|$")
plt.
plt.
plt.
plt.
plt.

100

2
1

hs = signal.fregs (nums, dens)

legend ()

xlabel (‘Frecuencia [rad/seg]’)

ylabel (‘Magnitud’)

title (‘Respuesta en frecuencia del filtro andlogo’)
grid()

Figura 56. Respuesta en frecuencia filtro anilogo pasa-banda, Q = 2007 [radseg].

| 92| Dora Maria Ballesteros, Diego Renza

Y se convierte el filtro andlogo en digital con la Transformada Bilineal, asi:

fs=3 *f

filtz = signal.dlti(*signal.bilinear (nums, dens, fs))
wz, hz = signal.freqgz (filtz.num, filtz.den)

plt.plot (wz, (np.abs(hz)), label=r’$|H(z)|$")
plt.legend()

plt.xlabel (‘Frecuencia normalizada [rad/muestral’)
plt.ylabel (‘Magnitud’)

plt.title(‘Respuesta en frecuencia del filtro digital’)
plt.grid()

Figura 57. Respuesta en frecuencia filtro digital pasa-banda, w = 1.61 [radfmuestra], Q = 2.

La frecuencia de resonancia la encontramos a partir de la grafica anterior, con el
siguiente codigo en Python:

x = np.where (abs(hz) > 0.999)
wcd = np.max(x)*3.14/len (wz)
print (wcd)

1.6251953125

A nivel tedrico, la frecuencia de resonancia del filtro digital es:

wd =2*np.arctan (frad/ (fs*2))
wd

1.6163910321996993

Los valores anteriores son muy similares entre si, entonces hemos verificado que el
filtro quedo bien disehado.

Las constantes de los polinomios del numerador y denominador de la funcion de
transferencia del filtro digital son:

| filtz.num |

array ([0.19983368, 0. , -0.19983368])

[filtz.den |

array([1l. , 0.07294142, 0.60033263])

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 93'

De tal forma que H(z) es:

H(z)=(0.19983368+[-0.199833682)]"(-2))/(1-0.07294142z"(-1)+
[0.600332632)(-2))
0.19983368 + 0.199833682
H(z) =

1- 0.07294142z1 + 0.600332632*

Los ceros, polos y ganancia del filtro digital se calculan con el siguiente codigo en
Python:

z, P, k = signal.tf2zpk(filtz.num,filtz.den)
print (z)

print (p)
print (k)

[-1. 1.]
[-0.03647071+0.77395253) -0.03647071-0.773952537]
0.1998336840676125

Y se grafican con el siguiente codigo:

theta = np.linspace(-np.pi,np.pi,201)
plt.rcParams[“figure.figsize”] = (5,5)

plt.plot(np.cos(theta),np.sin(theta))
plt.scatter(np.real(z),np.imag(z), marker='0o")
plt.scatter (np.real (p),np.imag(p), marker=’'x’")
plt.title(‘Grafica polos y ceros filtro digital’)

Figura 58. Grifica de polos y ceros del filtro digital pasa-banda, wq=1.61 [radfmuestra].
A partir de la grafica anterior, se pueden extraer las siguientes conclusiones:

I. En este caso, existe un cero en z=-1y otro en z = 1, dado que el filtro
es pasa-banda.

2. Los dos polos se ubican en el semicirculo izquierdo del plano z, dado
que la frecuencia de resonancia, w,, es mayor a /2.

| 94| Dora Maria Ballesteros, Diego Renza

5.4. FILTRO BUTTERWORTH

En esta ultima seccidon de diseno de filtros IIR, trabajaremos con los filtros But-
terworth, los cuales se caracterizan por:

* Respuesta plana en la banda de paso.

* En la frecuencia de corte tiene una ganancia de -3 dB en escala loga-
ritmica, o de \/2/2 en escala lineal, respecto a la amplitud en la banda
de paso.

e H(s) solamente posee polos.

Apoyandonos en Python tenemos dos estrategias para disenar los filtros Butterwor-
th, las cuales son:

Disenar un filtro analogo Butterworth y aplicar Transformada Bilineal.
Disenar directamente el filtro digital Butterworth.
A continuacion, exploraremos las dos estrategias de diseno, a partir de ejemplos.
Ejemplo I: filtro Butterworth andlogo y Transformada Bilineal

Se quiere disenar un filtro Butterworth pasa-bajo, a partir de un filtro analogo y
aplicando Transformada Bilineal, para diferentes valores de orden del filtro (especifi-
camente, N = 2,4,6,8,10). La frecuencia de corte del filtro analogo es (). = 100 [Hz].

* Graficar la respuesta en frecuencia del filtro analogo, para N = 2,4,6,8,10.
* Escribir H(s) cuando N = 2.

* Calcular el filtro digital a partir del filtro analogo aplicando Transformada
Bilineal, con f, = 10 *) . Graficar la respuesta en frecuencia del filtro digi-
tal Butterworth, para N = 2,4,6,8,10

* Escribir H(z) cuando N = 2.

* Obtener los polos y ceros del filtro digital Butterworth, para N =

2,4,6,8,10 Graficar los polos y ceros del filtro digital Butterworth, para
N=2,4,6,8,10.

Respuesta en frecuencia del filtro analogo, N = 2,4,6,8,10:

import numpy as np

from scipy import signal

import matplotlib.pyplot as plt
f = 100

wn = f * 2 * np.pi

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 95'
N =2
b2,a2 = signal.iirfilter (N, wn, btype=’"lowpass’, analog=True,
ftype='butter’)
ws2, hs2 = signal.freqgs (b2, a2)
wsHz2=ws2/ (2*np.pi)
plt.rcParams|[“figure.figsize”] = (14,8)
plt.plot (wsHz2, (np.abs(hs2)), label=r’$|H(s)| con N=2$')
plt.legend()
plt.xlabel (‘Frecuencia [Hz]")
plt.ylabel (‘Magnitud’)
plt.title(‘Respuesta en frecuencia filtro pasa bajo’)
plt.grid()
N =4
b4,a4 = signal.iirfilter (N, wn, btype=’"lowpass’, analog=True,
ftype='butter’)
ws4, hs4 = signal.freqgs (b4, a4)
wsHz4=ws4/ (2*np.pi)
plt.plot (wsHz4, (np.abs(hsd)), label=r’$|H(s)| con N=4$')
plt.legend()
N = 6
b6,a6 = signal.iirfilter (N, wn, btype='"lowpass’, analog=True,
ftype="butter’)
ws6, hs6 = signal.fregs (b6, a6)
wsHz6=ws6/ (2*np.pi)
plt.plot (wsHz6, (np.abs(hs6)), label=r’S$|H(s)| con N=6$')
plt.legend()
N = 8
b8, a8 = signal.iirfilter (N, wn, btype=’lowpass’, analog=True,
ftype="butter’)
ws8, hs8 = signal.freqgs (b8, a8)
wsHz8=ws8/ (2*np.pi)
plt.plot (wsHz8, (np.abs(hs8)), label=r’S$|H(s)| con N=8%")
plt.legend()
N = 10
b10,al0 = signal.iirfilter (N, wn, btype=’'lowpass’, analog=True,

ftype="butter’)

wsl1l0, hsl0 = signal.fregs(bl0, all)

wsHz10=wsl0/ (2*np.pi)

plt.plot (wsHz10, (np.abs(hsl0)), label=r’$|H(s)| con N=10$")
plt.legend()

plt.show()

Nota:Tener en cuenta que el vector de frecuencias, ws, se divide entre 27, para que

la grafica quede en [Hz].

Obteniendo las siguientes respuestas en frecuencia del filtro analogo:

| 96| Dora Maria Ballesteros, Diego Renza

Figura 59. Respuesta en frecuencia filtro analogo Butterworth, .= 100[Hz] y N = 2,4,6,8,10.

De la figura anterior se puede identificar que independiente del orden del filtro, la
ganancia en la frecuencia de corte es la misma, correspondiente a 0.707. Es decir, to-
das las curvas cruzan por el mismo valor de ganancia cuando .= 100[Hz]. Adicio-
nalmente, a medida que el valor de N aumenta, entonces la caida entre la banda de
paso y la banda de rechazo se hace mas pronunciada, es decir, mayor atenuacion en
las frecuencias cercanas a la de corte (se aproxima en mayor medida al filtro ideal).

Funcion de transferencia del filtro analogo, para N = 2:

Previamente se han encontrado las constantes de los polinomios tanto del numera-

“,_n

dor como del denominador del filtro analogo, en las variables “b”y “a”. Para el caso
de N = 2, se utilizan b2 y a2.

[o2 I

array ([394784.17604357])

[[a2 |

array ([1.00000000e+00, 8.88576588e+02, 3.94784176e+05])

A partir de los resultados anteriores, se tiene que:

39.47*10*

H(s) =
(5) s2+8.88*10%s + 3.94 * 105

Nota: por simplicidad se expresé H(s) solamente con dos cifras decimales.

Calculo de H(z) y respuesta en frecuencia del filtro digital:

Se utiliza *signal.bilinear para realizar el mapeo entre el filtro analogo y el
filtro digital, y signal.freqgz para la respuesta en frecuencia del filtro digital.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 97'

fs= 10*f # frecuencia de muestreo en Hz

filtz2 = signal.dlti(*signal.bilinear (b2, a2, fs))

wz2, hz2 = signal.freqgz (filtz2.num, filtz2.den)

plt.plot (wz2, (np.abs(hz2)), label=r’$|H(z)|$’) # se repite para los
demés valores de N

plt.legend()

plt.xlabel (‘Frecuencia normalizada [rad/muestral’)

plt.ylabel (‘Magnitud’)

plt.title(‘Respuesta en frecuencia del filtro digital’)

plt.grid()

Obteniendo las siguientes respuestas en frecuencia del filtro digital:

Figura 60. Respuesta en frecuencia filtro digital Butterworth, W = 0.6 [rad/muestra] y N = 2,4,6,8,10.

Teniendo en cuenta que se aplicé Transformada Bilineal para el diseno del filtro digi-
tal, entonces se utiliza la ecuacién que relaciona la frecuencia del filtro analogo con
la del filtro digital que se present6 en la seccién 5.3, asi:

fcdigital= 2 * np.arctan(wn/ (2*fs))
print (fcdigital)

0.6087915947292302

Funcion de transferencia del filtro digital, para N=2:

A partir de los vectores filtz.num y filtz.den se encuentran las constantes de los po-
linomios del numerador y denominador de H(z), respectivamente. Especificamente
para N = 2, se utiliza filtz2 .num y filtz2.den.

| filtz2.num |

array([0.06396438, 0.12792877, 0.06396438])

I nitzz.den

array ([1. , -1.16826067, 0.42411821])

Y entonces,
0.0639 + 0.1279z1 + 0.0639z2
1-1.1683z1'+0.4241z72

Nota: por simplicidad se expreso H(z) solamente con cuatro cifras decimales.

H(z) =

| 98| Dora Maria Ballesteros, Diego Renza

Calculo y grafica de los polos y ceros del filtro digital, para N = 2,4,6,8,10:

z2,
z4,
z6,
z8,
z10

p2, k2 = signal.tf2zpk(filtz2.num,filtz2.den)
p4, k4 = signal.tf2zpk(filtz4.num,filtz4.den)
p6, k6 = signal.tf2zpk(filtz6.num,filtz6.den)
p8, k8 = signal.tf2zpk(filtz8.num,filtz8.den)
, pl0, k10 = signal.tf2zpk (filtz10.num,filtz10.den)

plt

plt

theta = np.linspace(-np.pi,np.pi,201)

plt.
plt.
plt.

.rcParams [“figure.figsize”] = (5,5)

.plot (np.cos (theta),np.sin(theta))

scatter (np.real(z2),np.imag(z2), marker=’'0o’")
scatter (np.real (p2),np.imag(p2), marker='x’")
title (‘Gréafica polos y ceros filtro digital, N=27)

plt

plt.
plt.
plt.

.plot (np.cos (theta),np.sin(theta))

scatter (np.real(z10),np.imag(z10), marker='0o")
scatter (np.real (pl0),np.imag(pl0), marker=’'x’")
title (‘Gréafica polos y ceros filtro digital, N=10 V')

Y se obtienen las graficas que se presentan en la Figura 61. Se puede apreciar que
independiente del orden del filtro todos los ceros se ubican en z = -1 (por ser un
filtro pasa-bajos), y que todos los polos se ubican en el semicirculo derecho (dado
que w,<1/2).

a) b)

Figura 61. Grifica de polos y ceros del filtro pasa pasa-bajo Buttherworth digital, w,= 0.6

[radmuestral y N = 2,4,6,8,10. Estrategia de diseno # |.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 99'

Ejemplo 2: filtro Butterworh digital

Se quiere disenar directamente un filtro Butterworth digital, correspondiente con
un filtro andlogo con =100 [HZ],fs =10 * Q , y diferentes valores de orden del
filtro, especificamente N = 2,4,6,8,10.

* Calcular Hz y graficar el filtro digital Butterworth, para N = 2,4,6,8,10.
e Escribir Hz cuando N = 2.

* Obtener los polos y ceros cuando N = 2,4,6,8,10. Graficar los polos y
ceros cuando N =2,4,6,8,10.

Como primer paso, debemos encontrar la frecuencia normalizada del filtro digital,
la cual la podemos expresar como:

w = L Ecuacion 49
n fs/z
Que, en este caso es:
_ 100
Wn - 1000 - 0-2
2

Nota: tener en cuenta que O <w <1.

Posteriormente, utilizamos la instruccion signal.iirfilter,haciendo analo-
g=False.

Calculo de H(z) y grafica de la respuesta en frecuencia del filtro digital:

import numpy as np
from scipy import signal
import matplotlib.pyplot as plt

N = 2

f = 100

fs = 10*f

wn = £/(fs/2)

b2, a2 = signal.iirfilter (N, wn, btype=’lowpass’, analog=False,

ftype="butter’)

wz2, hz2 = signal.freqz (b2, a2, fs)
plt.rcParams[“figure.figsize”] = (14,8)

plt.plot(wz2, (np.abs(hz2)), label=r’$|H(z) |, N=2$')
plt.legend()

plt.xlabel (‘Frecuencia normalizada [rad/muestral’)
plt.ylabel (‘Magnitud’)

plt.title(‘Rta frecuencia filtro digital Butterworth’)
plt.grid()

N = 4

b4, a4 = signal.iirfilter (N, wn, btype=’lowpass’, analog=False,
ftype="butter’)

wz4, hz4 = signal.freqgz (b4, a4, 4000)

plt.plot (wz4, (np.abs(hz4)), label=r’S$|H(z) |, N=4$')

plt.legend()

[100]| Dora Maria Ballesteros, Diego Renza

N = 6

b6, a6 = signal.iirfilter (N, wn, btype=’'lowpass’, analog=False,
ftype="butter’)

wz6, hz6 = signal.freqgz (b6, a6, 4000)

plt.plot(wz6, (np.abs(hz6)), label=r’S$|H(z)|, N=6$")

plt.legend()

N = 8

b8, a8 = signal.iirfilter (N, wn, Dbtype=’lowpass’, analog=False,
ftype="butter’)

wz8, hz8 = signal.freqgz (b8, a8, 4000)

plt.plot (wz8, (np.abs(hz8)), label=r’$|H(z) |, N=8%')

plt.legend()

N = 10

b10, al0 = signal.iirfilter (N, wn, btype=’lowpass’, analog=False,
ftype='"butter’)

wz1l0, hz1l0 = signal.freqgz (b10, al0, 4000)

plt.plot (wz1l0, (np.abs(hz1l0)), label=r’S$|H(z)|, N=10S$")
plt.legend()

plt.show ()

Figura 62. Respuesta en frecuencia filtro Butterworth digital pasa pasa-bajo, w,=0.2'y
N = 2,4,6,8,10. Estrategia de diseno #2.

Funcion de transferencia del filtro digital, para N = 2:

A partir de los vectores b y a se encuentran las constantes de los polinomios del
numerador y denominador de H(z), respectivamente. Especificamente para N = 2,
se utilizab2 y a2.

[b2 |

array([0.06745527, 0.13491055, 0.06745527])

a2 |

array([1. , -1.1429805, 0.4128016])

Y entonces,

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON |1 01 |

0.0674 + 0.1349z"' + 0.0674z*
1-1.1429z'+0.4128z*

Nota |: por simplicidad se expresé H(z) solamente con cuatro cifras decimales.

H(z) =

Nota 2: se puede comparar este valor de H(z) con el obtenido en el ejemplo #I de
esta seccion.

Calculo y grafica de los polos y ceros del filtro digital, para N=2,4,6,8,10:

z2, p2, k2 = signal.tf2zpk(b2, a2)
z4, p4, k4 = signal.tf2zpk (b4, ad)
z6, p6, k6 = signal.tf2zpk (b6, ab)
z8, p8, k8 = signal.tf2zpk (b8, a8)
z10, pl0, k10 = signal.tf2zpk(bl0, all)

Se utiliza el mismo codigo que del ejemplo # | de esta seccion para graficar los
polos y ceros de los filtros digitales. Las graficas se presentan en la Figura 63.

a) b)

Figura 63. Grafica de polos y ceros del filtro pasa pasa-bajo, w,= 0.2 y N = 2,4,6,8,10.
Estrategia de disefio # 2.

[102] Dora Maria Ballesteros, Diego Renza

Al comparar la Figura 63 con la Figura 61, se aprecia que la ubicacion de los polos y
ceros es muy similar, por lo que las dos estrategias de diseno de esta seccion per-
miten llegar al “mismo resultado”.

5.5. FILTRADO DE SENALES CON FILTROS IIR

Para finalizar esta seccion de filtros lIR, vamos a filtrar una sefal con un filtro IIR
disenado con el método de Transformada Bilineal, a partir de un filtro analogo.

Para ello, utilizaremos la siguiente senal:

Figura 64. Senal en el dominio del tiempo, xnoise[n].

Esta senal se ha generado con el siguiente cédigo en Python,

#Paso 1: 1importar librerias de trabajo
import numpy as np

import scipy as sp

import matplotlib.pyplot as plt

from scipy import signal

import math

#Paso 2: generar una sefial sin ruido
f = 500 # Hz

fs = 100 * £

step = 1/fs

frad = £ * 2 * math.pi

t = np.arange (0,10/f, step)

X = np.sin(frad*t)

#Paso 3: generar ruido aleatorio

samples = len(x)

An= 0.8

noise = An*np.random.rand (samples) - An/2

Paso 4: sumar la sefial senoidal con la sefal de ruido
xnoise = x + noise

plt.plot (t,xnoise)
plt.xlabel (‘tiempo [s]’)

plt.ylabel (‘Amplitud’)

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON |‘| 03|

Visualizando xnoise[n], ésta contiene dos senales, una correspondiente a x[n],y otra
a noise[n]. Especificamente, x[n] es una sehal senoidal; mientras que, noise[n], es un
ruido de fondo. Sin embargo, para poder tener informacién mas puntual del com-
portamiento en frecuencia tanto de x[n]| como de noise[n], es necesario realizar un
analisis espectral de la senal xnoise[n].

Entonces, utilizamos el codigo en Python que vimos en el Capitulo |, para el calculo
y grafica de la Transformada de Fourier de la senal.

import scipy.fftpack as fourier

L=len (xnoise)

transformada = fourier.fft (xnoise)
magnitud = abs (transformada)

magnitud lateral = magnitud[0:L//2]
fase = np.angle(transformada)
frecuencias = fs*np.arange (0, L//2)/L
plt.plot (frecuencias, magnitud lateral)
plt.xlabel (‘Frecuencia (Hz)’, fontsize="10")
plt.ylabel (‘|FFT|’, fontsize="10")
plt.show ()

Obteniendo el siguiente espectro de xnoise[n]

Figura 65. Espectro de xnoise[n].

Observamos que existe un tono (senal de frecuencia pura) correspondiente a la
senal senoidal, y que el ruido se encuentra en todos los valores de frecuencia, hasta
f./2 (es decir 25K [Hz]).

Para determinar la frecuencia exacta correspondiente a la sefal senoidal, vamos a
apoyarnos en el siguiente codigo en Python:

| np.max (magnitud lateral) |

496.67405522769

x = np.where (abs (magnitud lateral) == np.max (magnitud lateral))
f tono = np.min(x)*(fs/2)/len(magnitud lateral)

print (£ tono)

500.0

De tal forma que, el tono se encuentra ubicado en los 500 [Hz], de amplitud 496.67.

Teniendo en cuenta que queremos filtrar el ruido que abarca todas las frecuencias,
y que la sefal de interés se encuentra Unicamente en la frecuencia de 500 [Hz], lo

[104| Dora Maria Ballesteros, Diego Renza

mas conveniente en este caso es disenar un filtro pasa-banda de banda angosta, con

Q> 0.5 (. Q= 1),y 2,= 500 [Hz].

Entonces, la funcion de transferencia del filtro analogo queda de la siguiente forma:

A partir de H(s) se escribe el siguiente cédigo en Python:

import numpy as np
from scipy import signal
import matplotlib.pyplot as plt

£ = 500

frad = 2*3.14*f
Q=1

G =1

nums=np.array ([0, G*frad/Q, 0])
dens=np.array([1l, frad/Q, frad*frad])

ws, hs = signal.freqgs (nums, dens)

plt.plot(ws, (np.abs(hs)), label=r’S|[H(s)[S")
plt.legend()

plt.xlabel (‘Frecuencia [rad/seg]’)

plt.ylabel (‘Magnitud’)

plt.title(‘Respuesta en frecuencia del filtro andlogo’)
plt.grid()

Y obtenemos la siguiente respuesta en frecuencia del filtro analogo,

Figura 66. Respuesta en frecuencia filtro andlogo pasa-banda, () = 10007 [radseg].

Y aplicamos Transformada Bilineal, para obtener H(z), asi:

filtz = signal.dlti(*signal.bilinear (nums, dens, fs))
wz, hz = signal.freqgz (filtz.num, filtz.den)

plt.plot (wz, (np.abs(hz)), label=r’$|H(z)|$")
plt.legend()

plt.xlabel (‘Frecuencia normalizada [rad/muestral’)
plt.ylabel (‘Magnitud’)

plt.title(‘Respuesta en frecuencia del filtro digital’)
plt.grid()

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON |1 05|

Figura 67. Respuesta en frecuencia filtro digital pasa-banda, w,= 0.061 [radMmuestra].

La frecuencia de corte del filtro digital la obtenemos tanto a partir de la grafica de
la respuesta en frecuencia del filtro, como de la ecuacion tedrica que relaciona la
frecuencia del filtro andlogo con la frecuencia del filtro digital.

Utilizamos el siguiente codigo en Python:

| np.max (abs (hz))

0.9958317963050908

x = np.where (abs (hz) == np.max (abs(hz)))
wcd = np.max(x)*3.14/1len (wz)
print (wcd)

0.061328125000000004

wd =2*np.arctan (frad/ (fs*2))
wd

0.06277937277186546
Verificamos que los valores son similares, entonces el filtro quedo bien disenado.

Posteriormente, encontramos las constantes de los polinomios del numerador y
denominador de H(z), asi:

| filtz.num |

array ([0.01544233, 0. , -0.01544233])

[filtz.den |

array ([1. , -1.96523623, 0.96911534])

Y escribimos H(z) de la siguiente manera,

0.015-0.015z2
1-1.965z"! +0.969z

H(z) =
Nota: por simplicidad se han utilizado solamente tres cifras decimales en H(z).

A partir de H(z) filtramos la sehal con signal.filtfilt, con el siguiente codigo:

[106] Dora Maria Ballesteros, Diego Renza

filtrada = signal.filtfilt (filtz.num, filtz.den, xnoise)
plt.rcParams[“figure.figsize”] = (10,6)

plt.plot (t,filtrada)

Nota: a diferencia del caso de filtros FIR, ahora el parametro “a” de la instruccion
signal.filtfilt no es una constante de valor igual a uno, sino que también es
un vector. Especificamente, con el nombre de las variables que hemos utilizado,
corresponde a filtz.den.

Obteniendo como resultado:

Figura 68. Senal filtrada en el dominio del tiempo.

Adicionalmente, podemos verificar que el espectro de la senal filtrada no contiene
el ruido de fondo, con el siguiente cédigo en Python:

transformada? = fourier.fft (filtrada)
magnitud2 = abs (transformada?2)

magnitud lateral2 = magnitud2[0:L//2]

fase2 = np.angle(transformada?2)

frecuencias2 = fs*np.arange(0, L//2)/L
plt.rcParams|[“figure.figsize”] = (10,6)
plt.plot (frecuencias2, magnitud lateral2)
plt.xlabel (‘Frecuencia (Hz)’, fontsize="10")
plt.ylabel (‘|FFT|’, fontsize="10")
plt.show ()

Figura 69. Espectro de la senal filtrada.

