
107PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

CAPÍTULO 6.

Procesamiento de Imágenes
Como capítulo final de este libro, trabajaremos con señales en dos dimensiones,
específicamente con imágenes. Esto te permitirá obtener las bases conceptuales y
de programación para abordar cursos más avanzados en procesamiento de imagen,
por ejemplo, de visión por computador.

Al finalizar el capítulo, deberás estar en capacidad de:

1.	 Explicar las diferencias entre imágenes blanco-negro, escala de grises, e
imágenes a color.

2.	 Explicar en qué consisten los modelos de color RGB y HSV, así como rea-
lizar conversiones utilizando la librería de OpenCV de Python.

3.	 Realizar ecualización de imagen utilizando la librería de OpenCV de Python.

4.	 Distinguir diferentes tipos de ruido en imágenes.

5.	 Reconocer qué tipo de filtro es adecuado para reducir un tipo de ruido
específico en la imagen.

6.	 Explicar el concepto de convolución en imágenes.

7.	 Realizar detección de bordes a partir de diferentes tipos de kernels.

8.	 Explicar las diferencias entre DCT y DFT en imágenes.

9.	 Aplicar la DCT o la DFT en imágenes utilizando la librería de OpenCV de
Python.

10.	 Explicar el concepto de compresión de imágenes.

6.1.	 CONCEPTOS BÁSICOS DE IMÁGENES
En las primeras secciones del libro hemos trabajado con señales uni-dimensionales,
y gran parte de los ejemplos se han enfocado en audio. En este capítulo, nos enfo-
caremos en imágenes, que corresponden a señales en 2D, cuyos ejes corresponden
a filas y columnas.

108 Dora Maria Ballesteros, Diego Renza

Lo primero que debemos saber es que no todas las imágenes tienen las mismas
características. Por ejemplo, pueden variar entre ellas el tamaño y el color utilizado.

En relación con el tamaño, la unidad de medida es el píxel, y la resolución de la
imagen está dada por la cantidad de filas y columnas. Entonces, una imagen de 100
x 100 tendrá 10,000 píxeles de resolución, mientras que, una imagen de 1,000 x
1,000 tendrá 1M píxeles de resolución. En las cámaras digitales actuales es típico
encontrar resoluciones de varios mega píxeles. Entonces, hemos identificado la pri-
mera diferencia entre las señales 1D correspondientes a audio y las imágenes, en el
primer caso hablábamos de muestras de la señal, y ahora hablaremos de píxeles de
la imagen.

La segunda característica de la imagen corresponde a su color. Podemos encontrar
imágenes a blanco-negro (BW: black and white), a escala de grises y a color de tres
bandas (aunque también existen imágenes con mayor número de canales, las cuales
no abordaremos en este libro).

Las primeras, BW, tienen solamente un bit asociado a cada píxel de la imagen, de tal
forma que, si la imagen tiene 1M píxeles, entonces tendrá 1M bits. El valor de “1” co-
rresponde al blanco, mientras que, el valor de “0” corresponde al negro. Las segun-
das, imágenes a escala de grises, tienen 8 bits por cada píxel, y el rango de color va
del negro (“00000000”) al blanco (“11111111”) pasando por distintas tonalidades
de gris, para un total de 256 colores. Entonces, una imagen de 1M píxeles tendrá
8Mbits, o de forma equivalente 1MB. Finalmente, tenemos las imágenes a color, que
típicamente se denominan RGB (Red, Green, Blue), aunque realmente ese es uno de
los espacios de color que existen. En este caso, por cada píxel de la imagen tenemos
8 bits asociados a cada uno de los tres canales de color, para un total de 24 bits por
píxel. Retomando el mismo ejemplo, para la imagen de 1M píxeles, tendremos 3MB.

Para ilustrar de mejor forma las diferencias en términos de color de las imágenes
BW, a escala de grises y a color, se presenta en la Figura 70 una imagen del reposi-
torio personal de los autores del libro.

	 (a)				 (b)			 (c)

Figura 70. Ejemplo de imagen: a) BW, b) Escala de grises, c) Color. Fuente: repositorio
personal de los autores.

109PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

6.2.	 ESPACIOS DE COLOR
El espacio de color más ampliamente conocido se denomina RGB, donde la imagen
se representa en tres canales o “bandas” de color, una correspondiente al rojo, otra
al verde, y la última al azul. Cada color tiene 256 tonalidades distintas (28), y en total
se tiene una paleta de16,776,216 colores (es decir, 224). Retomando el ejemplo de la
sección anterior, se presentan las tres bandas de color en la Figura 71.

	 (a)				 (b)			 (c)

Figura 71. Ejemplo de imagen RGB: a) banda R, b) banda G, c) banda B. Fuente: repositorio
personal de los autores.

	 (a)				 (b)			 (c)

Figura 72. Ejemplo de imagen HSB: a) banda H, b) banda S, c) banda B. Fuente: repositorio
personal de los autores.

Otro espacio de color corresponde a HSV (Hue, Saturation, Value) o también conoci-
do como HSB (Hue, Saturation, Brightness). En este espacio de color, la primera banda
corresponde al tono de la imagen, la segunda a la saturación de la imagen, y la terce-
ra al brillo de la imagen. Para nuestra foto de la playa, las tres bandas se presentan en
la Figura 72. En este espacio de color, la banda de brillo (Figura 72b) es muy similar
a la imagen a escala de grises (que presentamos en la Figura 70b).

6.3.	 INTRODUCCIÓN A LA LIBRERÍA OPENCV
Bueno, en este punto te preguntarás como se puede leer la imagen en lenguaje
Python, convertir una imagen a color en una imagen a escala de grises y/o BW,
así como transformar una imagen de un espacio a color a otro. Para ello, vamos a
utilizar la librería OpenCV de Python, la cual es especializada en procesamiento de
imágenes4.
4 https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_tutorials.html

110 Dora Maria Ballesteros, Diego Renza

Figura 73. Logo de OpenCV.

Entonces, manos a la obra con el código en Python.

Paso 1: importar la librería de OpenCV, leer la imagen que previamente hemos subido a
nuestro entorno de trabajo en Colaboratory, y conocer el tamaño de la imagen.

import cv2
img = cv2.imread(“/content/Fig74.jpg”)
img.shape

Para la imagen de prueba, el resultado es:

(300, 400, 3)

Paso 2: visualización de la imagen. Para ello se debe importar un patch en Colaboratory.

from google.colab.patches import cv2_imshow
cv2_imshow(img)

Figura 74. Imagen a color – foto playa.

Nota: si trabajas en Jupyter Notebook no es necesario que importes el patch, y
puedes utilizar cv2.imshow.

Paso 3: conversión de imagen RGB a escala de grises

img_gray=cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

cv2_imshow(img_gray)

111PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 75. Imagen a escala de grises – foto playa.

Paso 4: conversión de imagen a escala de grises en BW

r,img_bw = cv2.threshold(img_gray,45,255,cv2.THRESH_BINARY)

cv2_imshow(img_bw)

Figura 76. Imagen a blanco y negro – foto playa.

Lo que hemos realizado en este paso 4 se conoce como umbralización de la imagen
(o thresholding, en inglés), proceso en el cual a los píxeles que superan el umbral se
les asigna el color blanco, y a los que no superan el umbral se les asigna el color
negro. Si modificamos el valor del umbral, la imagen va a lucir más clara (umbral
bajo) o más oscura (umbral alto). Podemos apreciar que las palmeras tienen el color
negro, mientras que el mar y el cielo el color blanco, dado que, en la imagen a escala
de grises la tonalidad de gris tanto del cielo como del mar es mucho más clara que
la de las palmeras.

La instrucción cv2.threshold5 requiere de dos valores numéricos, el primero
corresponde al umbral, y el segundo al valor que se asigna en caso de que el píxel
supere el umbral. En el ejemplo, el umbral es 45 y el valor asignado a los píxeles que
superen el umbral es 255.

5 https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_thresholding/
py_thresholding.html

112 Dora Maria Ballesteros, Diego Renza

Paso 5: guardar las imágenes en tu entorno de trabajo

cv2.imwrite(‘image_color.jpg’,img)
cv2.imwrite(‘image_gray.jpg’,img_gray)
cv2.imwrite(‘image_bw.jpg’,img_bw)

Paso 6: conversión de RGB a HSV

H, S, V = cv2.split(cv2.cvtColor(img, cv2.COLOR_RGB2HSV))

cv2_imshow(H)

Figura 77. Imagen canal H – foto playa.

cv2_imshow(S)

Figura 78. Imagen canal S – foto playa.

cv2_imshow(V)

Figura 79. Imagen canal V – foto playa.

113PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Hasta este punto, ya sabemos cómo leer imágenes con la librería OpenCV, convertir
una imagen a color en una imagen a escala de grises y BW, y convertir del espacio
de color RGB a HSV. Puedes ampliar la información de conversión de espacios de
color en la documentación de OpenCV de cv2.cvtColor6.

6.4. 	 ECUALIZACIÓN DE IMÁGENES
¿Alguna vez te ha pasado que tomas una foto con poca luz y la imagen te quedó muy
oscura? ¿Sabes cómo funcionan los ajustes de brillo en los celulares, por ejemplo,
para aclarar fotos oscuras? ¡Eso lo aprenderás en esta sección y adiós a borrar fotos
porque quedaron muy oscuras!

Lo primero que debemos conocer es el concepto de histograma de una imagen y
como calcularlo y graficarlo en lenguaje Python. Pues bueno, la definición general
del histograma es que es una representación gráfica de la ocurrencia de los datos.
En el caso de imágenes, el histograma muestra cuántos píxeles de la imagen tienen
color 0, cuántos tienen color 1, y así sucesivamente hasta cuantos píxeles tienen co-
lor 255 (en imágenes a escala de grises). En el caso de imágenes a color, presentará
la cantidad de píxeles para cada uno de los 256 niveles de color por banda, es decir,
es necesario dibujar tres histogramas, uno para la banda R, otro para la banda G, y
otro para la banda B. Si la imagen es BW, entonces el histograma solamente tendrá
dos niveles de color, el 0 correspondiente al negro, y el 1 correspondiente al blanco.

A continuación, se presentan los pasos.

Paso 1: Lectura de la imagen a color

import cv2
img = cv2.imread(“/content/Fig80.jpg”)

Y obtengo esta hermosa imagen. Si, ya sé que está un poco oscura, pero más ade-
lante aprenderemos a aclararla.

Figura 80. Imagen a color – foto mar. Fuente: repositorio personal de los autores.

6 https://opencv24-python-tutorials.readthedocs.io/en/stable/py_tutorials/py_imgproc/py_colorspaces/py_colorspaces.html

114 Dora Maria Ballesteros, Diego Renza

Por ahora, vamos a conocer el tamaño de la imagen con img.shape. El resultado
es (4032, 3024, 3. Es decir que, nuestra imagen tiene 4032 filas, 3024 columnas y 3
bandas de color (por defecto en el espacio BGR). El total de píxeles de la imagen es
4032 x 3024, que es igual a 12,192,768. En términos de bytes, el total se calcula así:
4032 x 3024 x 3, que es igual a 36,578,304, dado que en cada banda de color un píxel
tiene 1B, y la imagen tiene tres bandas de color. Ahora, te preguntarás si ese tamaño
que acabamos de encontrar es el mismo que te aparece en tu PC en relación con
esa imagen, y si revisas te darás cuenta de que solo pesa 1,54 KB. La diferencia entre
el cálculo que acabamos de realizar y el peso real de la imagen radica en su tipo de
formato, (en este caso es *.jpg), el cual es un formato de compresión de imágenes
que reduce su peso, pero conserva su resolución espacial. Si la imagen estuviese en
formato bmp de 24 bits, el espacio en disco sería el calculado previamente (alrede-
dor de 36 MB).

Para facilitar la visualización de la imagen en Colaboratory, vamos a realizar un pro-
ceso de redimensionamiento de la imagen, para que quede de tamaño 400 filas y 300
columnas, para ello utilizaremos el siguiente código:

Paso 2: Redimensionamiento de la imagen

img=cv2.resize(img, (300, 400), interpolation = cv2.INTER_AREA)

Ten en cuenta que primero incluimos la cantidad de columnas que deseamos que
la imagen tenga, y después la cantidad de filas. Entonces, la cantidad de píxeles por
banda es ahora de 400 x 300, que es igual a 120,000. El siguiente paso, es convertir
la imagen a escala de grises.

Paso 3: Conversión imagen a color en escala de grises

img_gray=cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

cv2_imshow(img_gray)

Obteniendo esta imagen:

Figura 81. Imagen a escala de grises – foto mar.

115PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Bueno, ahora sí, vamos a dibujar nuestro histograma y a mejorar la apariencia de la
imagen.

Paso 4: Histograma de la imagen a escala de grises

import matplotlib.pyplot as plt
pixels=img_gray.shape[0]*img_gray.shape[1]
print(‘la cantidad de píxeles de la imagen es:’, pixels)
hist = cv2.calcHist([img_gray],[0],None,[256],[0,256])
plt.plot(hist)
plt.show()

Obteniendo el siguiente resultado:

la cantidad de píxeles de la imagen es: 120000

Figura 82. Histograma de la imagen a escala de grises – foto mar.

A partir del histograma se identifica que la imagen está altamente concentrada en
intensidades de píxel alrededor de 60 (en escala 0 a 255), y que existen muy pocos
píxeles con intensidades superiores a 128 (mitad de escala). Esto es coherente con
la “apariencia oscura” de la imagen.

A continuación, mejoraremos la apariencia de la imagen a escala de grises.

Paso 5: Ecualización del histograma de la imagen a escala de grises

img_gray_eq = cv2.equalizeHist(img_gray)
cv2_imshow(img_gray_eq)

Como resultamos, obtenemos:

Figura 83. Imagen ecualizada a escala de grises – foto mar.

116 Dora Maria Ballesteros, Diego Renza

Si comparas esta imagen con la imagen a escala de grises original (Paso 3), notarás
una gran diferencia. Es más clara. ¿Cómo crees entonces que es el histograma de
la imagen ecualizada?

Paso 6: Histograma de la imagen a escala de grises ecualizada

hist2 = cv2.calcHist([img_gray_eq],[0],None,[256],[0,256])
plt.plot(hist2)

Figura 84. Histograma de la imagen ecualizada a escala de grises – foto mar.

Este histograma es significativamente diferente al obtenido en el Paso 4. Ahora, una
gran parte de los píxeles de la imagen tienen niveles de color mayores a 128, y, por
lo tanto, la imagen tiene una apariencia clara. Por otro lado, es típico en los histogra-
mas ecualizados que se tengan numerosos picos de ocurrencia, y que no se tengan
curvas suavizadas como en los histogramas de imágenes naturales (sin ecualizar).

A continuación, dibujaremos el histograma por banda de color y ecualizaremos la
imagen a color.

Paso 7: Histograma de la imagen a color (histograma por cada banda de color)

img_RGB=cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
color = (‘r’,’g’,’b’)
for i,col in enumerate(color):
 histr = cv2.calcHist([img_RGB],[i],None,[256],[0,256])
 plt.plot(histr,color = col)
 plt.xlim([0,256])
plt.show()

En este punto es pertinente explicar que cuando leemos imágenes con OpenCV, las
bandas de color quedan en orden contrario al del espacio RGB. Es decir, primero la
banda B (azul), después la banda G (verde), y finalmente, la banda R (roja). Por ello, se
hace necesario convertir de BGR a RGB, y posteriormente dibujar el histograma de
cada una de las bandas (se puede realizar en gráficas independientes, o en la misma
gráfica como con este código).

El histograma que obtenemos es:

117PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 85. Histograma por banda de la imagen a color – foto mar.

Cada histograma se ha dibujado con el color correspondiente a su banda. El his-
tograma de la banda roja tiene la mayor parte de sus píxeles por debajo del color
50. El histograma de la banda verde tiene la mayor parte de sus píxeles con color
cercano a 50. Mientras que, el histograma de la banda azul tiene dos zonas de color
que sobresalen, alrededor de 50 y alrededor de 100, esta última con mayor cantidad
de píxeles. Aunque los histogramas son diferentes entre sí, tienen en común que en
los tres casos la cantidad de píxeles por encima del color 128 es prácticamente cero.

Paso 8: Ecualización del histograma de la imagen a color

H, S, V = cv2.split(cv2.cvtColor(img, cv2.COLOR_RGB2HSV))
V_equ = cv2.equalizeHist(V)
img_equ = cv2.cvtColor(cv2.merge([H, S, V_equ]), cv2.COLOR_HSV2RGB)
cv2_imshow(img_equ)

El proceso de ecualización de la imagen lo realizaremos en la banda V del espacio
de color HSV. Para lo cual, primero convertiremos la imagen de RGB a HSV, poste-
riormente realizaremos un split en las tres bandas, para así ecualizar únicamente la
banda V. Finalmente, volvemos a unir las tres bandas del espacio HSV (con la banda V
ecualizada), y convertimos de HSV a RGB. La imagen a color ecualizada es:

Figura 86. Imagen ecualizada a color – foto mar.

118 Dora Maria Ballesteros, Diego Renza

Mejoró con relación a la imagen del Paso 1, ¿cierto? Bueno, ya has aprendido un
concepto de procesamiento de imágenes que tiene una aplicación práctica. Cuando
vuelvas a cambiar el brillo de una imagen, recuerda que lo que estás haciendo es un
proceso de ecualización de su histograma.

Espero que te haya gustado esta temática. Si quieres ampliar la información de histo-
gramas en OpenCV, te invito a consultar la documentación de la librería7.

6.5. 	 RUIDO EN IMÁGENES
En esta sección aprenderemos a reconocer tres tipos diferentes de ruido presen-
tes en imágenes: guassiano (gaussian), uniforme (uniform), y sal y pimienta (salt and
pepper).

6.5.1.	 Ruido gaussiano:

Este ruido se caracteriza porque su distribución (histograma) tiene la forma de una
campana de gauss, en la que existe un valor central (con gran parte de los píxeles del
ruido), y pocos píxeles en los colores extremos. La forma y comportamiento está
definida por el promedio y la varianza. Si la varianza es baja, la campana de gauss es
angosta; mientras que, si la varianza es alta, la campana de gauss es ancha. El prome-
dio es el valor central de la campana.

Vamos ahora a generar este tipo de ruido para adicionarlo a una imagen a color y
visualizar su efecto. Para ello utilizaremos el siguiente código en Python:

import cv2
import numpy as np
from google.colab.patches import cv2_imshow
img = cv2.imread(“/content/Fig89.jpg”)
noise = np.zeros((img.shape[0], img.shape[1]),dtype=np.uint8)
gaussian_noise = np.zeros((img.shape[0], img.shape[1], img.sha-
pe[2]),dtype=np.uint8)
gaussian_noise[:,:,0]=cv2.randn(noise, 128, 30)
gaussian_noise[:,:,1]=cv2.randn(noise, 128, 30)
gaussian_noise[:,:,2]=cv2.randn(noise, 128, 30)
cv2_imshow(gaussian_noise)

Lo primero que hacemos es crear una matriz de ceros del mismo tamaño de la
imagen a la cual le adicionaremos el ruido. Posteriormente, con la instrucción
cv2.randn8 vamos a generar ruido gaussiano. Debemos seleccionar el valor
central de la distribución gaussiana (μ), y la desviación estándar (σ); para nuestro
caso μ = 128, y σ = 30. Este ruido gaussiano lo creamos para cada una de las
bandas a color (banda 0, banda 1 y banda 2, de gaussian_noise). El resultado se
presenta a continuación:

7 https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_histograms/py_ta-
ble_of_contents_histograms/py_table_of_contents_histograms.html#table-of-content-histograms	
8 https://docs.opencv.org/4.5.3/d2/de8/group__core__array.html#gaeff1f61e972d133a04ce3a5f81cf6808

119PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 87. Imagen a color – ruido gaussiano.

Para verificar que el ruido obtenido es de tipo gaussiano, utilizamos el siguiente
código:

import matplotlib.pyplot as plt
repetir este paso por canal
hist = cv2.calcHist([gaussian_noise],[0],None,[256],[0,256])
plt.plot(hist)
plt.show()

	 (a)				 (b)			 (c)
Figura 88. Histograma por banda de la imagen a color – ruido gaussiano.

Se verifica que los histogramas de la Figura 88 de cada uno de los canales, efectiva-
mente tienen forma de campana de gauss.

Como siguiente paso, leemos una imagen en Colaboratory9:

img = cv2.imread(“/content/Fig89.jpg”)
img.shape
img=cv2.resize(img, (640, 480), interpolation = cv2.INTER_AREA)
cv2_imshow(img)

Figura 89. Imagen a color – villa de leyva. Fuente: repositorio personal de los autores.

9 Esta imagen hace parte del repositorio personal del autor de este libro

120 Dora Maria Ballesteros, Diego Renza

Y adicionamos el ruido que previamente hemos creado, así:

noisy_img_gn = cv2.add(img, (gaussian_noise*0.5).astype(np.uint8))
cv2_imshow(noisy_img_gn)

El ruido gaussiano se multiplica por 0.5 para no saturar a la imagen, y se convierte en
formato entero de 8 bits con astype(np.uint8). Posteriormente, se adiciona
a la imagen a color con la instrucción cv2.add, obteniendo el siguiente resultado:

Figura 90. Imagen a color con ruido gaussiano – villa de leyva.

¿Cuál es el efecto de este tipo de ruido en la imagen?

Rta: La foto luce “envejecida”.

6.5.2.	 Ruido uniforme:

Otro ruido típico en imágenes es el ruido uniforme. A diferencia del ruido anterior,
este tiene una distribución uniforme de sus colores, es decir que no existe un color
central, sino que todos los colores (o tonos) tienen la misma cantidad de píxeles (o
aproximadamente la misma cantidad).

El procedimiento para crear este tipo de ruido es similar al caso anterior. Debemos
crear una matriz de ceros del mismo tamaño de la imagen, y posteriormente para
cada una de las bandas de color creamos el ruido. Sólo que en este caso utilizamos
la instrucción cv2.randu, en lugar de cv2.randn. Podemos utilizar el siguiente
código en Python:

noise = np.zeros((img.shape[0], img.shape[1]),dtype=np.uint8)
uniform_noise = np.zeros((img.shape[0], img.shape[1], img.sha-
pe[2]),dtype=np.uint8)
uniform_noise[:,:,0]=cv2.randu(noise, 0, 256)
uniform_noise[:,:,1]=cv2.randu(noise, 0, 256)
uniform_noise[:,:,2]=cv2.randu(noise, 0, 256)
cv2_imshow(uniform_noise)

Obteniendo el siguiente resultado:

121PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 91. Imagen a color – ruido uniforme.

Como siguiente paso dibujamos el histograma, banda a banda, así:

repetir este paso por canal
hist = cv2.calcHist([uniform_noise],[0],None,[256],[0,256])
plt.plot(hist)
plt.show()

Obteniendo:

	 (a)				 (b)			 (c)

Figura 92. Histograma por banda de la imagen a color – ruido uniforme.

Aunque el histograma que obtenemos no tiene una perfecta distribución uniforme,
la cantidad de píxeles para cada uno de los tonos (0 a 255) es muy similar entre
sí. Para el tamaño de imagen que hemos utilizado en este ejemplo, la cantidad de
píxeles por canal es 480 x 640 = 307.200. Esta cantidad de píxeles dividido en los
256 tonos es igual a 1.200. Si se revisa con detalle los histogramas, precisamente las
ocurrencias oscilan alrededor de ese valor.

Finalmente, adicionamos el ruido a la imagen a color, con el siguiente código en
Python:

noisy_img_un = cv2.add(img, (uniform_noise*0.5).astype(np.uint8))
cv2_imshow(noisy_img_un)

Cuyo resultado es:

122 Dora Maria Ballesteros, Diego Renza

Figura 93. Imagen a color con ruido uniforme – villa de leyva.

¿En qué se diferencia esta imagen de la obtenida al adicionar el
ruido gaussiano?

Rta: aparte de envejecida, tienen pequeños “gránulos” o “puntos
de arena” en toda la imagen. El efecto es notorio en zonas am-
plias y de pocos detalles, como el cielo o las nubes.

6.5.3.	 Ruido sal y pimienta:

Este tipo de ruido tiene dos tonos, uno correspondiente a la sal y el otro a la pi-
mienta. Para crear ruido de este tipo, lo primero que debemos hacer es crear ruido
uniforme para cada una de las bandas de color, y posteriormente aplicar un proceso
de umbralización (similar al que utilizamos cuando convertimos una imagen a escala
de grises en una imagen BW). Dependiendo del valor del umbral seleccionado, ten-
dremos más o menos píxeles correspondientes a sal y a pimienta.

Para el siguiente código en Python el umbral seleccionado es 10, y a los píxeles que
superen el umbral se les asigna el color 255 (máxima escala).

sp_noise=np.zeros((img.shape[0], img.shape[1], img.shape[2]),d-
type=np.uint8)
ret,impulse_noise0=cv2.threshold(uniform_noise[:,:,0],10,255,cv2.
THRESH_BINARY)
ret,impulse_noise1=cv2.threshold(uniform_noise[:,:,1],10,255,cv2.
THRESH_BINARY)
ret,impulse_noise2=cv2.threshold(uniform_noise[:,:,2],10,255,cv2.
THRESH_BINARY)
sp_noise[:,:,0]=impulse_noise0
sp_noise[:,:,1]=impulse_noise1
sp_noise[:,:,2]=impulse_noise2
cv2_imshow(sp_noise[:,:,0])

¡En este caso obtendremos poca pimienta y mucha sal!

123PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 94. Imagen a color con ruido sal y pimienta, con th = 10.

Y sus histogramas por banda, son:

repetir este paso por canal
hist = cv2.calcHist([sp_noise],[2],None,[256],[0,256])
plt.plot(hist)
plt.show()

Obteniendo:

	 (a)				 (b)			 (c)

Figura 95. Histograma por banda de la imagen a color – ruido sal y pimienta con th = 10.

Ahora, vamos a fijar un umbral alto, por ejemplo, de 200:

sp_noise=np.zeros((img.shape[0], img.shape[1], img.shape[2]),d-
type=np.uint8)
ret,impulse_noise0=cv2.threshold(uniform_noise[:,:,0],200,255,-
cv2.THRESH_BINARY)
ret,impulse_noise1=cv2.threshold(uniform_noise[:,:,1],200,255,-
cv2.THRESH_BINARY)
ret,impulse_noise2=cv2.threshold(uniform_noise[:,:,2],200,255,-
cv2.THRESH_BINARY)
sp_noise[:,:,0]=impulse_noise0
sp_noise[:,:,1]=impulse_noise1
sp_noise[:,:,2]=impulse_noise2
cv2_imshow(sp_noise[:,:,0])

¡En este caso obtendremos poca sal y mucha pimienta!

124 Dora Maria Ballesteros, Diego Renza

Figura 96. Imagen a color con ruido sal y pimienta, con th = 200.

Y sus histogramas, son:

	 (a)				 (b)			 (c)

Figura 97. Histograma por banda de la imagen a color – ruido sal y pimienta con th = 200.

Y finalmente adicionamos este ruido a la imagen, así:

noisy_img_sp = cv2.add(img, (sp_noise*0.5).astype(np.uint8))

cv2_imshow(noisy_img_sp)

Figura 98. Imagen a color con ruido sal y pimienta, th = 200 – villa de leyva.

¿En qué se diferencia esta imagen de la obtenida al adicionar el
ruido uniforme?

Rta: es mucho más notorio el efecto granular que en la imagen
con ruido uniforme.

125PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

6.6.	 FILTROS ESPACIALES
En esta sección entenderemos y aplicaremos el concepto de filtro espacial. Mate-
máticamente lo abordaremos en la Sección 6.7, pero por ahora, de forma concep-
tual y práctica realizaremos el filtrado de ruido en imágenes.

Lo primero que vamos a realizar es comparar el efecto que tiene en una imagen
los tres diferentes tipos de ruido que se explicaron en la Sección 6.5. La Figura 99
presenta un ejemplo.

	 (a)				 (b)			 (c)

Figura 99. Imagen de playa con tres tipos distintos de ruido: (a) sal y pimienta, (b) guassia-
no, (c) uniforme. Fuente: repositorio personal de los autores.

Pero, ¿cómo las diferenciamos?

•	 Empecemos con la imagen central, el efecto que tiene es de
“envejecida”, entonces esa imagen contiene ruido gaussiano.

•	 Ahora, comparemos las imágenes de los extremos, ambas
tienen un efecto “granular”. La imagen de la izquierda tiene
ruido sal y pimienta, por ser más evidente el efecto granular;
mientras que, la de la derecha tiene ruido uniforme.

A continuación, por medio de ejemplos se ilustrará el efecto que tienen diferentes
filtros espaciales en imágenes con diferentes tipos de ruido.

Empezaremos con la imagen que tienen ruido sal y pimienta, a la cual le aplicamos
un filtro tipo promedio. Este filtro 2D es similar al filtro de promedio 1D que cono-
cimos al inicio de este libro, pero en este caso es una matriz con todos sus valores
iguales a uno dividido en su tamaño (igual a filas x columnas). Por ejemplo, si el ta-
maño del filtro es (5 x 5), entonces cada posición del filtro tendrá el peso de 1∕25,
como se presenta en la siguiente Figura.

Figura 100. Filtro de promedio (5 x 5).

126 Dora Maria Ballesteros, Diego Renza

Una vez hemos leído la imagen en Python, aplicamos el filtro con el siguiente código:

f1_sp = cv2.blur(noisy_img_sp, (5,5), 0)
cv2_imshow(f1_sp)

Este filtro lo aplicamos a la imagen denominada noisy_img_sp, cuyo resultado es la
imagen f1_sp, la cual se presenta a continuación.

Figura 101. Imagen filtrada con filtro de promedio – ruido sal y pimienta.

El segundo tipo de filtro que vamos a evaluar es el filtro gausisano. En este caso, los
valores de la matriz varían entre sí, teniendo mayor peso la posición central del fil-
tro, y de menor peso las posiciones de los extremos. En este tipo de filtro los pesos
decrecen de forma gaussiana a medida que se alejan de la posición central, como se
presenta en la siguiente figura:

Figura 102. Filtro gaussiano (5 x 5). Se ha encerrado en un recuadro rojo la posición
central del filtro.

Para el filtro gausisano se utiliza el siguiente código en Python:

f2_sp = cv2.GaussianBlur(noisy_img_sp, (5,5), 0)
cv2_imshow(f2_sp)

Cuyo tamaño del filtro es también (5 x 5), y la salida en este caso se denomina f2_sp.
La imagen filtrada se presenta a continuación:

127PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 103. Imagen filtrada con filtro de gaussiano – ruido sal y pimienta.

Finalmente, filtraremos la imagen con un filtro de mediana (no confundir con el
filtro de promedio). Este tipo de filtro difiere a los dos anteriores en que no existe
una matriz de pesos del filtro. Se realiza un proceso de ordenamiento de los valores
de los píxeles de la imagen de una región de igual tamaño al del filtro, y se selecciona
el valor correspondiente a la posición central de los píxeles ordenados.

El código en Python es:

f3_sp = cv2.medianBlur(noisy_img_sp, 5)

cv2_imshow(f3_sp)

La imagen filtrada corresponde a f3_sp, como se presenta en la siguiente figura.

Figura 104. Imagen filtrada con filtro de mediana – ruido sal y pimienta.

La forma en que cada uno de estos filtros opera sobre la imagen, se explicará en
detalle en la Sección 6.7.

Por ahora, quiero que respondas la siguiente pregunta.

¿Cuál imagen filtrada consideras que presenta mejor calidad?,
es decir, ¿qué filtro seleccionarías para eliminar ruido tipo sal y
pimienta?
Rta: Para este tipo de ruido, el filtro de mediana es la mejor
opción.

128 Dora Maria Ballesteros, Diego Renza

En la segunda parte de esta sección, buscaremos un filtro para una imagen que
contiene ruido tipo gaussiano. Partiremos con el filtro de promedio (Figura 72), y
seguiremos con otro tipo de filtro denominado filtro bilateral (Figura 73).

Figura 105. Imagen filtrada con filtro de promedio – ruido gaussiano.

El filtro bilateral tiene en cuenta tres parámetros para calcular el valor de salida:
diámetro de la vecindad (d), varianza a nivel de color (σcolor), y varianza a nivel de
ubicación espacial (σspace).

•	 d es el diámetro de cada vecindad de píxeles. Si es negativo, se calcula a
partir de σspace.

•	 Cuando σcolor es alto, entonces, los colores más alejados dentro de la
vecindad se mezclan, obteniendo largas áreas de color casi-homogéneo.

•	 Cuando σspace es alto, entonces, los píxeles más alejados entre sí se mez-
clan (espacialmente hablando).

Este tipo de filtro es similar al filtro gaussiano, en términos de la cercanía en ubica-
ción espacial, pero incluye el concepto de cercanía de color también.

El siguiente es el código en Python para el filtro bilateral con d = 9, σcolor = 10,
σspace = 10
blur1 = cv2.bilateralFilter(noisy_img_sp,15,50,100)
cv2_imshow(blur1)

Figura 106. Imagen filtrada con filtro bilateral – ruido gaussiano.

129PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

¿Cuál imagen filtrada consideras que presenta mejor calidad?,
 es decir, ¿Qué filtro seleccionarías para eliminar ruido tipo gaus-
sinoa?
Rta: Para este tipo de ruido, el filtro bilateral es la mejor opción.

Puedes complementar la información de los filtros espaciales de esta sección en
https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html

6.7.	 CONVOLUCIÓN
En esta sección comprenderemos el concepto de “convolución” en imágenes. Estric-
tamente hablando, realmente realizaremos una operación de correlación entre un fil-
tro y una imagen, pero, teniendo en cuenta que, en la comunidad académica de visión
por computador y de aprendizaje profundo el nombre utilizado para esa operación
es el de convolución, utilizaremos ese nombre en este libro.

Lo primero a tener en cuenta es que la convolución es una operación que requiere
dos matrices, una de las cuales es la imagen, y la otra es el filtro. Típicamente, los
filtros tienen la misma cantidad de filas que de columnas, por ejemplo, de 3 x 3, pero
se podrían diseñar filtros con dimensiones que no sean iguales entre sí. Cada una
de las posiciones del filtro se denominan “pesos”. Conceptualmente, el filtro debe
tener una dimensión menor a la de la imagen para poder realizar un proceso de
“barrido” sobre ella.

Con un ejemplo ilustraremos el proceso:

Figura 107. Imagen y filtro para operación de convolución.

El primero paso consiste en adicionarle un borde a la imagen con valores de ceros,
ampliando su dimensión en 2 filas y dos columnas. Es decir, para nuestra Imagen de
ejemplo, la cual es de (5 x 5), al incluirle el borde quedará de (7 x 7).

Figura 108. Imagen de entrada con borde.

130 Dora Maria Ballesteros, Diego Renza

El propósito de adicionarle el borde a la Imagen de entrada es que el resultado de la
convolución (Imagen filtrada) contenga la misma cantidad de filas y de columnas que
de la Imagen de entrada. Cuando el tamaño del filtro es de 3 x 3, el borde es de 2
filas (una superior y una inferior) y dos columnas (una a la izquierda y una a la dere-
cha); cuando el filtro es de tamaño 5x5, el borde es de 4 filas (dos superiores y dos
inferiores) y 4 columnas (dos a la derecha y dos a la izquierda), y así sucesivamente.

Como segundo paso, el filtro se superpone sobre la Imagen de entrada, ubicándolo
en el extremo superior izquierdo. Posteriormente, se realiza la multiplicación de los
píxeles de la Imagen con los pesos del filtro. Si el filtro es de tamaño 3 x 3, entonces
se realizan 9 multiplicaciones. Finalmente, se suma el resultado de las multiplicacio-
nes, y el valor obtenido se asigna al primer pixel de la imagen (primera fila, primera
columna). Hay que tener en cuenta que, si el resultado de la operación anterior es
negativo, se escribe un cero en el pixel de salida correspondiente. Por otro lado, si
el resultado es superior a 255, se escribe 255.

El proceso se presenta a continuación:

Figura 109. Proceso de convolución: Paso 2. Se sombrea en amarillo el píxel central de la
imagen, para el paso correspondiente.

Como tercer paso, el filtro se desplaza una posición a la derecha, y se repite de nue-
vo el proceso de realizar las multiplicaciones, sumar su resultado y asignar al pixel
correspondiente de la imagen de salida (primera fila, segunda columna). El proceso
se presenta en la siguiente figura.

131PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 110. Proceso de convolución: paso 3. Se sombrea en amarillo el píxel central de la
imagen, para el paso correspondiente.

Como cuarto paso, y así sucesivamente, se desplaza de nuevo el filtro una posición
a la derecha, se realizan las correspondientes multiplicaciones, se suman sus valores
y se asigna al píxel de la imagen de salida que corresponda. Una vez el filtro se des-
plaza y llega al borde de la imagen, debe desplazarse de nuevo, empezando por la
segunda fila de la imagen, primera columna. El proceso de desplazamiento se realiza
de forma iterativa, hasta que se recorra por completo a la imagen de entrada. La
ubicación del píxel central para cada uno de los pasos del proceso de convolución y
la dirección del desplazamiento se presentan a continuación:

Figura 111. Pixel central en el proceso de convolución: barrido de la imagen de izquierda a
derecha, y de arriba abajo.

Para el presente ejemplo, el resultado de la convolución es:

132 Dora Maria Ballesteros, Diego Renza

Figura 112. Imagen filtrada.

Para saber cuál es el tamaño del borde a adicionarle a la imagen, utilizaremos las
siguientes ecuaciones:

		 W0 = WI - Wk + 1	 Ecuación 50

		 H0 = HI - Hk + 1		 Ecuación 51

Donde W1 , WK , W0, corresponden a la cantidad de columnas de la imagen de entra-
da con borde, del filtro y de la imagen filtrada (output), respectivamente. Mientras
que, HI , Hk, H0, corresponden a la cantidad de filas de la imagen de entrada con borde,
del filtro y de la imagen filtrada, respectivamente.

Entonces, si queremos que la imagen de salida tenga 5 x 5 y estamos utilizando un
filtro de 3 x 3, necesitamos que la imagen de entrada con borde sea de 7 x 7, tenien-
do en cuenta que al reemplazar los valores anteriores en la ecuación 50 o ecuación
51, tenemos que 5 = 7- 3+1. A la imagen de entrada sin borde (cuyas dimensiones
son iguales a la de la imagen de salida), debemos adicionarle 2 filas y 2 columnas, o,
en otras palabras, un borde de 1 rodeando a la imagen.

	

6.8.	 DETECCIÓN DE BORDES
En esta subsección abordaremos el tema de detección de bordes en imágenes. Lo
primero, es saber que, así como existen filtros cuyo propósito consiste en reducir el
ruido de una imagen (como los vistos en el Capítulo 6.6.), también tenemos filtros
cuyo objetivo es detectar el borde de una imagen. Mientras los primeros cumplen
que la sumatoria de sus pesos es igual a 1, en los segundos (detección de bordes) se
cumple que la sumatoria de sus pesos es igual a 0.

Adicionalmente, se pueden detectar bordes en una sola dirección o multi-dirección.
Dentro de los filtros más conocidos en la literatura tenemos Prewitt, Sobel y Lapla-
ciano. Y como algoritmo de detección de bordes (que incluye etapa de pre-procesa-
miento, filtrado y pos-procesamiento), tenemos el algoritmo Canny10.

Empecemos con el filtro Prewitt. Es una clase de detector de bordes aplicando la
diferencia entre píxeles de primer orden. Puede detectar bordes en el eje horizon-
10 Öztürk, Ş., & Akdemir, B. (2015). Comparison of edge detection algorithms for texture analysis on glass pro-
duction. Procedia-Social and Behavioral Sciences, 195, 2675-2682.

133PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

tal o en el eje vertical. Este filtro utiliza un tamaño de 3x3, donde la fila o columna
central son de valor 0, y las filas o columnas de los extremos son de valor 1 y -1. A
continuación, se presenta el filtro Prewitt para cada dirección de detección de borde.

Figura 113. Filtro Prewitt (3 x 3).

En el caso del filtro Sobel, también se detectan bordes en la dirección vertical y
horizontal, pero en este caso, se realiza un énfasis en el pixel central de las filas o
columnas cuyos pesos son distintos de cero, realizando una detección más fuerte
de los cambios de la imagen utilizando la primera derivada. En la siguiente figura se
presenta el filtro Sobel.

Figura 114. Filtro Sobel (3 x 3).

Por otro lado, el filtro Laplaciano se basa en la segunda derivada de la imagen (o dife-
rencia de segundo orden)11. Existen dos versiones del filtro Laplaciano, en la primera,
se computa la diferencia entre el pixel central y el promedio de sus vecinos directos
(arriba, abajo, izquierda, derecha), y en la segunda, se computa la diferencia entre el
pixel central y el promedio de todos sus vecinos (incluidas las esquinas). La versión
básica y la alternativa se presentan a continuación12.

Figura 115. Filtro Laplaciano (3 x 3).

Finalmente, tenemos el algoritmo o filtro Canny, el cual realiza varias etapas, las
cuales se resumen a continuación13y14:

	

11 https://www.sciencedirect.com/topics/engineering/laplacian-filter.	
12 Nixon, M. S., & Aguado, A. S. (2008). Low-level feature extraction (including edge detection). Feature Extrac-

tion and Image Processing. 3rd edi. Linacre House/Jordan Hill/Oxford: Elsevier, 115-79.
13 https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html
14 https://docs.opencv.org/3.4/da/d5c/tutorial_canny_detector.html

134 Dora Maria Ballesteros, Diego Renza

a. 	 Reducción de ruido: es una etapa de pre-procesamiento que consiste en
reducir el ruido presente en la imagen, por medio de un filtro Gaussiano
de tamaño 5 x 5.

b. 	 Identificación del gradiente de intensidad de la imagen: se filtra la imagen
obtenida en el paso anterior tanto con un filtro Sobel de detección de
bordes horizontales, como de detección de bordes verticales, obteniendo
Gx y Gy, respectivamente. A partir de las dos imágenes resultantes (una
por cada filtro Sobel), se calcula la imagen gradiente, tanto en magnitud
como en fase, aplicando las siguientes ecuaciones:

		 |G| = √Gx + Gy	 	 Ecuación 52

		 ∡ = tg-1 (Gy/ Gx
)	 	 Ecuación 53

La dirección del gradiente siempre es perpendicular a los bordes. Se aproxima a
uno de los cuatro posibles ángulos: horizontal, vertical, diagonal derecha, diagonal
izquierda.

c. 	 Supresión de los no máximos: esta etapa y la siguiente hacen parte del
pos-procesamiento. Consiste en remover los píxeles no deseados, que no
correspondan con el borde de la imagen. Si existen varios píxeles vecinos
en la dirección del gradiente que son potenciales bordes, se identifica
cuál de ellos es un máximo local, y ese es el píxel que se conversa para la
siguiente etapa del algoritmo.

d. 	 Umbralización con histéresis: en esta última fase se eliminan falsos bor-
des, a partir de un proceso de histéresis con dos umbrales. Se define un
umbral alto y un umbral bajo. Si el potencial borde supera al umbral alto,
entonces se considera un borde real. Si, por el contrario, es menor que
el umbral bajo, se descarta. Para los potenciales bordes cuya intensidad
se encuentra entre el umbral bajo y el umbral alto, la decisión de incluir-
se como un verdadero borde o de eliminarse depende de sus píxeles
vecinos. Si éstos son bordes, se considera también como borde; en caso
contrario, se descarta.

Una de las ventajas del algoritmo Canny es que detecta de forma simultánea bordes
en cuatro direcciones (vertical, horizontal, diagonal derecha y diagonal izquierda).
Adicionalmente, el borde detectado es delgado, gracias a sus etapas de pos-proce-
samiento posteriores al filtrado (supresión de los no-máximos y umbralización con
histéresis).

A continuación, aplicaremos los filtros anteriores a una imagen, para comparar las
diferencias de forma visual entre los bordes detectados en cada caso.

2 2

135PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

import cv2
import numpy as np
from google.colab.patches import cv2_imshow
img = cv2.imread(‘coctel.jpg’)
cv2_imshow(img)

prewitt_x = np.array([[1, 1, 1],
 [0, 0, 0],
 [-1, -1, -1]], dtype=np.float32)
print(prewitt_x)

fig1= cv2.filter2D(img, -1, prewitt_x, borderType=0)
cv2_imshow(fig1)

fig1g = cv2.cvtColor(fig1, cv2.COLOR_BGR2GRAY)
ret, fig1bw = cv2.threshold(fig1g,50,255,cv2.THRESH_BINARY)
cv2_imshow(255-fig1bw) # imagen filtrada con Prewitt_x

prewitt_y = np.array([[1, 0, -1],
 [1, 0, -1],
 [1, 0, -1]], dtype=np.float32)
print(prewitt_y)

fig2= cv2.filter2D(img, -1, prewitt_y, borderType=0)
cv2_imshow(fig2)

fig2g = cv2.cvtColor(fig2, cv2.COLOR_BGR2GRAY)
ret, fig2bw = cv2.threshold(fig2g,50,255,cv2.THRESH_BINARY)
cv2_imshow(255-fig2bw) # imagen filtrada con Prewitt_y

fig3bw = fig1bw + fig2bw
cv2_imshow(255-fig3bw) # imagen filtrada con Prewitt_x + Prewitt_y

sobel_x = np.array([[1, 2, 1],
 [0, 0, 0],
 [-1, -2, -1]], dtype=np.float32)
print(sobel_x)

fig4= cv2.filter2D(img, -1, sobel_x, borderType=0)
cv2_imshow(fig4)

fig4g = cv2.cvtColor(fig4, cv2.COLOR_BGR2GRAY)
ret, fig4bw = cv2.threshold(fig4g,50,255,cv2.THRESH_BINARY) # imagen
filtrada con Sobel_x
cv2_imshow(255-fig4bw)

sobel_y = np.array([[1, 0, -1],
 [2, 0, -2],
 [1, 0, -1]], dtype=np.float32)
print(sobel_y)

fig5= cv2.filter2D(img, -1, sobel_y, borderType=0)
cv2_imshow(fig5)

fig5g = cv2.cvtColor(fig5, cv2.COLOR_BGR2GRAY)
ret, fig5bw = cv2.threshold(fig5g,50,255,cv2.THRESH_BINARY) # imagen
filtrada con Prewitt_y
cv2_imshow(255-fig5bw)

136 Dora Maria Ballesteros, Diego Renza

fig6bw = fig4bw + fig5bw
cv2_imshow(255-fig6bw) # imagen filtrada con Sobel_x + Sobel_y

laplaciano1 = np.array([[0, -1, 0],
 [-1, 4, -1],
 [0, -1, 0]], dtype=np.float32)
print(laplaciano1)

fig7= cv2.filter2D(img, -1, laplaciano1, borderType=0)
cv2_imshow(fig7)

fig7g = cv2.cvtColor(fig7, cv2.COLOR_BGR2GRAY)
ret, fig7bw = cv2.threshold(fig7g,50,255,cv2.THRESH_BINARY)
cv2_imshow(255-fig7bw) # imagen filtrada con Laplaciano básico

laplaciano2 = np.array([[-1, -1v -1],
 [-1, 8, -1],
 [-1, -1, -1]], dtype=np.float32)
print(laplaciano2)

fig8= cv2.filter2D(img, -1, laplaciano2, borderType=0)
cv2_imshow(fig8)

fig8g = cv2.cvtColor(fig8, cv2.COLOR_BGR2GRAY)
ret, fig8bw = cv2.threshold(fig8g,50,255,cv2.THRESH_BINARY)
cv2_imshow(255-fig8bw) # imagen filtrada con Laplaciano alternativo

edges_canny = cv2.Canny(img,220,55)
cv2_imshow(255-edges_canny) # imagen filtrada con algoritmo Canny

Empezaremos analizando las imágenes filtradas con Prewitt. La obtenida con Prewitt_x
detecta bordes especialmente en la dirección horizontal, como la altura de la bebida
dentro de la copa, o el soporte horizontal del techo del restaurante. En el caso de
la imagen filtrada con Prewitt_y, no se detectan los bordes mencionados anterior-
mente, pero sí los bordes correspondientes a las columnas verticales de soporte del
techo. Finalmente, la imagen obtenida al sumar las dos anteriores es más completa
que sus antecesoras por separado, mostrando bordes en ambas direcciones.

En el caso de las imágenes obtenidas con Sobel, los resultados son similares a las
obtenidas con Prewitt. Sin embargo, se puede apreciar mayor demarcación en algu-
nos bordes.

Por otro lado, las imágenes obtenidas con el filtro Laplaciano (en sus dos versiones)
muestran el borde vertical de la copa, aunque es más notorio con el Laplaciano al-
ternativo. En ambos casos, las imágenes filtradas tienen bordes delgados, a diferencia
de sus antecesoras.

137PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 116. Imagen de entrada y detección de bordes con diferentes tipos de filtros.
Fuente: repositorio personal de los autores.

Finalmente, con el algoritmo Canny se tienen bordes delgados en todas las direc-
ciones, y aparecen bordes en zonas de la imagen que con los otros filtros no se
visualizaban, por ejemplo, las ondulaciones en el tejado.

138 Dora Maria Ballesteros, Diego Renza

6.9.	 TRANSFORMADA DFT Y DCT
En esta sección se abordan dos transformadas en imágenes, del dominio espacial al
dominio frecuencial. Específicamente, las correspondientes con la Transformada de
Fourier Discreta (DFT) y la Transformada Consenoidal Discreta (DCT).

6.9.1.	 DFT (Discrete Fourier Transform)

La DFT de una imagen se calcula a partir de la siguiente ecuación:

Teniendo en cuenta que,

Donde F(k,l) es la Transformada Discreta de Fourier, mientras que f(a,b) es la ima-
gen en el dominio espacial de tamaño (M,N). Es decir, el resultado de la DFT se
obtiene al multiplicar la imagen en el dominio espacial f(a,b) por la función base (que
en este caso es una señal exponencial compleja) y sumar el resultado para cada
pareja (k,l). Se resalta que tanto los valores (a,b) como los valores (k,l) son enteros.

Cuando se grafica la DFT de una imagen, no se puede relacionar fácilmente el resul-
tado obtenido con la imagen original. Típicamente, si existen cambios significativos
de dirección en la imagen, éstos se verán reflejados en la DFT (patrones de líneas
blancas). Si la imagen se invierte en el eje vertical (flip vertical), el efecto que se tiene
en su DFT es precisamente el de inversión. De forma similar, si la imagen si invierte
respecto al aje horizontal (flip horizontal), también se tendrá el efecto en su DFT de
inversión. En ambos casos, la inversión en la DFT es en relación con el eje vertical, de
tal forma que la DFT de la imagen invertida horizontal es igual a la DFT de la imagen
invertida vertical. Por otro lado, si a la imagen se le aplica doble inversión (una por
cada eje), su DFT es igual al de la imagen original (sin invertir).

La Figura 84 presenta un ejemplo de una imagen y su correspondiente DFT para
diferentes tipos de manipulaciones de la imagen. Se resalta que la DFT de la imagen
original es igual a la DFT de doble flip; mientras que, la DFT de flip vertical es igual
a la DFT de flip horizontal.

139PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 117. Imagen con su respectiva DFT.

Para calcular la DFT de una imagen en Python, utilizamos el siguiente código:

Paso 1) Cargue de librerías de lectura de la imagen

import numpy as np
import cv2
from google.colab.patches import cv2_imshow
url= “/content/oficina.png”
img = cv2.imread(url)

Paso 2) Convertir la imagen RGB a escala de grises y representarla en punto flo-
tante de 32 bits

img_gray=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2_imshow(img_gray)
img_float32 = np.float32(img_gray)

Paso 3) Calcular la DFT y visualizar el resultado en escala logarítmica

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_
shift[:,:,1]))
cv2_imshow(magnitude_spectrum)

140 Dora Maria Ballesteros, Diego Renza

Paso 4) Invertir la imagen en el eje vertical, calcular su DFT y graficar

flipVertical = cv2.flip(img_float32, 1)
cv2_imshow(flipVertical)
dft = cv2.dft(flipVertical, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_
shift[:,:,1]))
cv2_imshow(magnitude_spectrum)

Paso 5) Invertir la imagen en el eje horizontal, calcular su DFT y graficar

flipHorizontal = cv2.flip(img_float32, 0)
cv2_imshow(flipHorizontal)
dft = cv2.dft(flipHorizontal, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_
shift[:,:,1]))
cv2_imshow(magnitude_spectrum)

Paso 6) Doble inversión de la imagen (horizontal y vertical), calcular su DFT y gra-
ficar

flipBoth = cv2.flip(img_float32, -1)

cv2_imshow(flipBoth)
dft = cv2.dft(flipBoth, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_
shift[:,:,1]))
cv2_imshow(magnitude_spectrum)

6.9.2.	 DCT (Discrete Cosine Transform)

Esta transformada es muy útil para la compresión de imágenes, dado que gran parte
de la información de la imagen (la más significativa o representativa) se concentra
en pocos coeficientes espectrales. Hace parte del algoritmo de compresión de imá-
genes conocido como JPEG (Joint Photographic Experts Group).

A diferencia de la DFT, en este caso todos sus coeficientes son reales, calculados a
partir de la siguiente ecuación:

Donde C(k,l) corresponde a la DCT de la imagen f(a,b) de tamaño (M,N).

Típicamente, la DCT se calcula por bloques de la imagen, es decir, la imagen se divide
en zonas y a cada zona se la aplica la DCT. A continuación, se presenta un ejemplo
de la DCT para la imagen completa, y para diferentes tamaños de bloque.

141PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

Figura 118. DCT de la imagen de la Figura 84.a.

A diferencia de la DFT, sí es posible encontrar una relación directa entre la DCT y
la imagen de entrada, cuando el tamaño del bloque es pequeño. Por ejemplo, en la
Figura 118b, se alcanza a apreciar la pared y la persiana de la oficina; mientras que,
en la Figura 118c y Figura 118d, se visualizan líneas diagonales correspondientes a
la separación entre filas de ladrillos. Cuando el tamaño del bloque es de (32,32) o
superior, ya no se alcanzan a identificar los patrones de la imagen.

En este caso, el código de Python para obtener las gráficas anteriores, se presenta
a continuación:

Paso 1) Cargue de librerías de lectura de la imagen

import numpy as np
import cv2
from google.colab.patches import cv2_imshow
url= “/content/oficina.png”

img = cv2.imread(url)

142 Dora Maria Ballesteros, Diego Renza

Paso 2) Convertir la imagen RGB a escala de grises y representarla en punto flo-
tante de 32 bits

img_gray=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2_imshow(img_gray)
img_float32 = np.float32(img_gray)

Paso 3) Calcular la DCT y visualizar el resultado

dct = cv2.dct(img_float32)
cv2_imshow(dct)

Nota: en este caso no se necesitan re-ordenar los coeficientes, como sí se realizó
en el caso de la DFT. Adicionalmente, no se calcula la magnitud, dado que los valores
son reales. Tampoco, se grafica en escala logarítmica.

Paso 4) Definir el tamaño del block, calcular la cantidad de bloques y crear un DCT
de salida de valores cero.

B=2 #blocksize
img1 = img_float32
h= img1.shape[0]
w =img1.shape[1]
blocksV=np.int(h/B)
blocksH=np.int(w/B)
transformed=np.zeros([h, w])

Nota: este ejemplo está diseñado para bloques cuadrados. En este caso es de (2,2).

Paso 4) Aplicar la DCT por bloque y escribir el resultado en la zona de salida co-
rrespondiente.

for row in range(blocksV):
 for col in range(blocksH):
 currentblock = cv2.dct(img1[row*B:(row+1)*B,col*B:(col+1)*B])
 transformed[row*B:(row+1)*B,col*B:(col+1)*B]= currentblock
cv2_imshow((transformed))

6.9.3. 	 Comprensión de imágenes con la DCT

Como se había mencionado previamente, una de las aplicaciones de la DCT es en la
comprensión de imágenes, específicamente en el estándar JPEG. A continuación, se
explicará brevemente en que consiste ese método de comprensión.

Lo primero a resaltar es que JPEG es un método de comprensión con pérdida de
información (o lossy), que significa que parte de los datos se pierden en el proceso
de compresión y no se puede recuperar la imagen exactamente igual a la original; no
obstante, de forma visual, no se apreciarán diferencias significativas entre la imagen
original y su versión comprimida. Su principal ventaja sobre métodos de compresión
sin pérdida de información (o lossless) es que permite obtener una tasa de compre-

143PROCESAMIENTO DIGITAL DE SEÑALES UTILIZANDO PYTHON

sión mayor, conocida como CR (compression rate), la cual corresponde a la relación
entre el tamaño de la imagen sin comprimir y el tamaño de la imagen comprimida.

Los principales bloques que hacen parte del método JPEG son: DCT, cuantización
inteligente, y codificación RL y Huffman. De forma muy resumida, los pasos son los
siguientes15:

a. 	 Aplicar DCT por bloques de la imagen, por ejemplo, de tamaño (8,8). El
resultado es otra imagen del mismo tamaño, cuyos datos corresponden a
coeficientes espectrales.

b.	 Aplicar cuantización a los coeficientes espectrales, dividiendo su valor
entre un factor de cuantización. De esta manera, se reduce la cantidad de
valores de salida (y la precisión de los datos). Adicionalmente, el proceso
es inteligente, dado que el factor de cuantización no es constante, sino
que, depende de la amplitud del coeficiente a cuantizar. A los coeficientes
que representan frecuencias mayores se les aplica un factor de cuantiza-
ción mayor.

c.	 A los coeficientes cuantizados se les aplica el método de codificación
run-length (RL). Este método aprovecha la gran cantidad de ceros con-
secutivos que se obtienen al combinar la DCT con la cuantización inte-
ligente. El barrido sobre los coeficientes cuantizados se realiza en forma
de zig-zag, empezando en el extremo superior izquierdo de la matriz
(DCT cuantizada). La longitud de la trama de salida es mucho menor a la
cantidad de coeficientes cuantizados del paso b.

d.	 Finalmente, se aplica codificación Huffman. La idea principal de este mé-
todo es representar los “símbolos” de mayor ocurrencia de la trama con
la menor cantidad de bits, mientras que, los de menor ocurrencia con
la mayor cantidad de bits. Entonces, los coeficientes espectrales cuanti-
zados y codificados con RL tendrán una representación binaria que es
significativamente menor a multiplicar el tamaño de la imagen por 8 bits
(en el caso de imágenes a escala de grises) o por 24 bits (en el caso de
imágenes a color de 3 canales). Los valores de compresión pueden llegar
a 100 veces.

15 https://cs.stanford.edu/people/eroberts/courses/soco/projects/data-compression/lossy/jpeg/index.htm

