PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON |1 07|

CAPITULO 6.

Procesamiento de IMAGENES

Como capitulo final de este libro, trabajaremos con senales en dos dimensiones,
especificamente con imagenes. Esto te permitira obtener las bases conceptuales y
de programacion para abordar cursos mas avanzados en procesamiento de imagen,
por ejemplo, de vision por computador.

Al finalizar el capitulo, deberas estar en capacidad de:

I Explicar las diferencias entre imagenes blanco-negro, escala de grises, e
imagenes a color.

2. Explicar en qué consisten los modelos de color RGB y HSV, asi como rea-
lizar conversiones utilizando la libreria de OpenCV de Python.

3. Realizar ecualizacién de imagen utilizando la libreria de OpenCV de Python.
4. Distinguir diferentes tipos de ruido en imagenes.
5. Reconocer qué tipo de filtro es adecuado para reducir un tipo de ruido

especifico en la imagen.
Explicar el concepto de convolucién en imagenes.
Realizar deteccion de bordes a partir de diferentes tipos de kernels.

Explicar las diferencias entre DCT y DFT en imagenes.

¥ © N o

Aplicar la DCT o la DFT en imagenes utilizando la libreria de OpenCV de
Python.

10. Explicar el concepto de compresion de imagenes.

6.1. CONCEPTOS BASICOS DE IMAGENES

En las primeras secciones del libro hemos trabajado con sehales uni-dimensionales,
y gran parte de los ejemplos se han enfocado en audio. En este capitulo, nos enfo-
caremos en imagenes, que corresponden a senales en 2D, cuyos ejes corresponden
a filas y columnas.

[108| Dora Maria Ballesteros, Diego Renza

Lo primero que debemos saber es que no todas las imagenes tienen las mismas
caracteristicas. Por ejemplo, pueden variar entre ellas el tamano y el color utilizado.

En relacion con el tamano, la unidad de medida es el pixel, y la resolucion de la
imagen esta dada por la cantidad de filas y columnas. Entonces, una imagen de 100
x 100 tendra 10,000 pixeles de resolucion, mientras que, una imagen de 1,000 x
1,000 tendra IM pixeles de resolucion. En las camaras digitales actuales es tipico
encontrar resoluciones de varios mega pixeles. Entonces, hemos identificado la pri-
mera diferencia entre las senales |D correspondientes a audio y las imagenes, en el
primer caso hablabamos de muestras de la senal, y ahora hablaremos de pixeles de
la imagen.

La segunda caracteristica de la imagen corresponde a su color. Podemos encontrar
imagenes a blanco-negro (BWV: black and white), a escala de grises y a color de tres
bandas (aunque también existen imagenes con mayor nimero de canales, las cuales
no abordaremos en este libro).

Las primeras, BW, tienen solamente un bit asociado a cada pixel de la imagen, de tal
forma que, si la imagen tiene | M pixeles, entonces tendra |M bits. El valor de““|” co-
rresponde al blanco, mientras que, el valor de “0” corresponde al negro. Las segun-
das, imagenes a escala de grises, tienen 8 bits por cada pixel, y el rango de color va
del negro (“00000000”) al blanco (“I I 1I'1111”) pasando por distintas tonalidades
de gris, para un total de 256 colores. Entonces, una imagen de |M pixeles tendra
8Mbits, o de forma equivalente | MB. Finalmente, tenemos las imagenes a color, que
tipicamente se denominan RGB (Red, Green, Blue), aunque realmente ese es uno de
los espacios de color que existen. En este caso, por cada pixel de la imagen tenemos
8 bits asociados a cada uno de los tres canales de color, para un total de 24 bits por
pixel. Retomando el mismo ejemplo, para la imagen de M pixeles, tendremos 3MB.

Para ilustrar de mejor forma las diferencias en términos de color de las imagenes
BW, a escala de grises y a color, se presenta en la Figura 70 una imagen del reposi-
torio personal de los autores del libro.

(@) (b) ()
Figura 70. Ejemplo de imagen: a) BW, b) Escala de grises, c) Color. Fuente: repositorio
personal de los autores.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON |1 09'

6.2. ESPACIOS DE COLOR

El espacio de color mas ampliamente conocido se denomina RGB, donde la imagen
se representa en tres canales o “bandas” de color, una correspondiente al rojo, otra
al verde, y la dltima al azul. Cada color tiene 256 tonalidades distintas (28),y en total
se tiene una paleta del6,776,216 colores (es decir, 22*). Retomando el ejemplo de la
seccion anterior, se presentan las tres bandas de color en la Figura 71.

@) (b) (c)

Figura 71.Ejemplo de imagen RGB: a) banda R, b) banda G, c) banda B. Fuente: repositorio
personal de los autores.

(2) (b) ()
Figura 72. Ejemplo de imagen HSB: a) banda H, b) banda S, c) banda B. Fuente: repositorio
personal de los autores.

Otro espacio de color corresponde a HSV (Hue, Saturation,Value) o también conoci-
do como HSB (Hue, Saturation, Brightness). En este espacio de color, la primera banda
corresponde al tono de la imagen, la segunda a la saturacion de la imagen, y la terce-
ra al brillo de la imagen. Para nuestra foto de la playa, las tres bandas se presentan en
la Figura 72. En este espacio de color, la banda de brillo (Figura 72b) es muy similar
a la imagen a escala de grises (que presentamos en la Figura 70b).

6.3. INTRODUCCION A LA LIBRERIA OPENCV

Bueno, en este punto te preguntaras como se puede leer la imagen en lenguaje
Python, convertir una imagen a color en una imagen a escala de grises y/o BW,
asi como transformar una imagen de un espacio a color a otro. Para ello, vamos a
utilizar la libreria OpenCV de Python, la cual es especializada en procesamiento de
imagenes*.

4 https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_tutorials.html

[110| Dora Maria Ballesteros, Diego Renza

Figura 73.Logo de OpenCV.
Entonces, manos a la obra con el cédigo en Python.

Paso I: importar la libreria de OpenCV, leer la imagen que previamente hemos subido a
nuestro entorno de trabajo en Colaboratory, y conocer el tamano de la imagen.

import cv2
img = cv2.imread (“/content/Fig74.7pg”)
img.shape

Para la imagen de prueba, el resultado es:
(300, 400, 3)

Paso 2: visualizacién de la imagen. Para ello se debe importar un patch en Colaboratory.

from google.colab.patches import cv2 imshow
cv2_imshow (img)

Figura 74.1magen a color — foto playa.

Nota: si trabajas en Jupyter Notebook no es necesario que importes el patch, y
puedes utilizar cv2.imshow.

Paso 3: conversion de imagen RGB a escala de grises

img gray=cv2.cvtColor (img, cv2.COLOR RGB2GRAY)

cv2 imshow (img gray)

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON |1 11 |

Figura 75. Imagen a escala de grises — foto playa.

Paso 4: conversion de imagen a escala de grises en BW

r,img bw = cv2.threshold(img gray,45,255,cv2.THRESH BINARY)

cv2_ imshow (img bw)

Figura 76.1magen a blanco y negro — foto playa.

Lo que hemos realizado en este paso 4 se conoce como umbralizacion de la imagen
(o thresholding, en inglés), proceso en el cual a los pixeles que superan el umbral se
les asigna el color blanco, y a los que no superan el umbral se les asigna el color
negro. Si modificamos el valor del umbral, la imagen va a lucir mas clara (umbral
bajo) o mas oscura (umbral alto). Podemos apreciar que las palmeras tienen el color
negro, mientras que el mary el cielo el color blanco, dado que, en la imagen a escala
de grises la tonalidad de gris tanto del cielo como del mar es mucho mas clara que
la de las palmeras.

La instruccion cv2.threshold® requiere de dos valores numéricos, el primero
corresponde al umbral, y el segundo al valor que se asigna en caso de que el pixel
supere el umbral. En el ejemplo, el umbral es 45 y el valor asignado a los pixeles que
superen el umbral es 255.

5 https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_thresholding/
py_thresholding.html

112] Dora Maria Ballesteros, Diego Renza

Paso 5: guardar las imagenes en tu entorno de trabajo

cv2.imwrite (‘image color.jpg’,img)
cvZ2.imwrite (‘image gray.jpg’,img gray)
cv2.imwrite (‘image bw.jpg’,img bw)

Paso 6: conversion de RGB a HSV

H, S, V = cv2.split(cv2.cvtColor (img, cv2.COLOR RGB2HSV))

cv2_ imshow (H)

Figura 77.Imagen canal H — foto playa.

cv2 imshow (S)

Figura 78.1magen canal S — foto playa.

cv2_ imshow (V)

Figura 79. Imagen canal V — foto playa.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 11 3|

Hasta este punto, ya sabemos cémo leer imagenes con la libreria OpenCV, convertir
una imagen a color en una imagen a escala de grises y BW, y convertir del espacio
de color RGB a HSV. Puedes ampliar la informacion de conversién de espacios de
color en la documentacién de OpenCV de cv2.cvtColor®.

6.4. ECUALIZACION DE IMAGENES

{Alguna vez te ha pasado que tomas una foto con poca luz y la imagen te quedo muy
oscura! ;Sabes como funcionan los ajustes de brillo en los celulares, por ejemplo,
para aclarar fotos oscuras? jEso lo aprenderas en esta seccién y adios a borrar fotos
porque quedaron muy oscuras!

Lo primero que debemos conocer es el concepto de histograma de una imagen y
como calcularlo y graficarlo en lenguaje Python. Pues bueno, la definicion general
del histograma es que es una representacion grafica de la ocurrencia de los datos.
En el caso de imagenes, el histograma muestra cuantos pixeles de la imagen tienen
color 0, cuantos tienen color |,y asi sucesivamente hasta cuantos pixeles tienen co-
lor 255 (en imagenes a escala de grises). En el caso de imagenes a color, presentara
la cantidad de pixeles para cada uno de los 256 niveles de color por banda, es decir,
es necesario dibujar tres histogramas, uno para la banda R, otro para la banda G,y
otro para la banda B. Si la imagen es BW, entonces el histograma solamente tendra
dos niveles de color, el 0 correspondiente al negro,y el | correspondiente al blanco.

A continuacion, se presentan los pasos.

Paso I: Lectura de la imagen a color

import cv2
img = cv2.imread(“/content/Fig80.Jjpg”)

Y obtengo esta hermosa imagen. Si, ya sé que esta un poco oscura, pero mas ade-
lante aprenderemos a aclararla.

Figura 80.1magen a color — foto mar. Fuente: repositorio personal de los autores.

6 https://opencv24-python-tutorials.readthedocs.io/en/stable/py_tutorials/py_imgproc/py_colorspaces/py_colorspaces.html

[114] Dora Maria Ballesteros, Diego Renza

Por ahora, vamos a conocer el tamano de la imagen con img. shape. El resultado
es (4032, 3024, 3. Es decir que, nuestra imagen tiene 4032 filas, 3024 columnas y 3
bandas de color (por defecto en el espacio BGR). El total de pixeles de la imagen es
4032 x 3024, que es igual a 12,192,768. En términos de bytes, el total se calcula asi:
4032 x 3024 x 3, que es igual a 36,578,304, dado que en cada banda de color un pixel
tiene |B,y la imagen tiene tres bandas de color.Ahora, te preguntaras si ese tamano
que acabamos de encontrar es el mismo que te aparece en tu PC en relacién con
esa imagen, y si revisas te daras cuenta de que solo pesa 1,54 KB. La diferencia entre
el calculo que acabamos de realizar y el peso real de la imagen radica en su tipo de
formato, (en este caso es *.jpg), el cual es un formato de compresion de imagenes
que reduce su peso, pero conserva su resolucion espacial. Si la imagen estuviese en
formato bmp de 24 bits, el espacio en disco seria el calculado previamente (alrede-
dor de 36 MB).

Para facilitar la visualizacion de la imagen en Colaboratory, vamos a realizar un pro-
ceso de redimensionamiento de la imagen, para que quede de tamano 400 filas y 300
columnas, para ello utilizaremos el siguiente codigo:

Paso 2: Redimensionamiento de la imagen

img=cv2.resize (img, (300, 400), interpolation = cv2.INTER AREA)

Ten en cuenta que primero incluimos la cantidad de columnas que deseamos que
la imagen tenga, y después la cantidad de filas. Entonces, la cantidad de pixeles por
banda es ahora de 400 x 300, que es igual a 120,000. El siguiente paso, es convertir
la imagen a escala de grises.

Paso 3: Conversion imagen a color en escala de grises

img gray=cv2.cvtColor (img, cv2.COLOR RGB2GRAY)

cv2_imshow (img gray)

Obteniendo esta imagen:

Figura 81.Imagen a escala de grises — foto mar.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON |1 1 5|

Bueno, ahora si, vamos a dibujar nuestro histograma y a mejorar la apariencia de la
imagen.

Paso 4: Histograma de la imagen a escala de grises

import matplotlib.pyplot as plt

pixels=img gray.shape[0]*img gray.shape[l]

print (‘la cantidad de pixeles de la imagen es:’, pixels)
hist = cv2.calcHist ([img gray], [0],None, [256], [0,256])
plt.plot (hist)

plt.show ()

Obteniendo el siguiente resultado:

la cantidad de pixeles de la imagen es: 120000

Figura 82. Histograma de la imagen a escala de grises — foto mar.

A partir del histograma se identifica que la imagen esta altamente concentrada en
intensidades de pixel alrededor de 60 (en escala 0 a 255), y que existen muy pocos
pixeles con intensidades superiores a 128 (mitad de escala). Esto es coherente con
la “apariencia oscura” de la imagen.

A continuacion, mejoraremos la apariencia de la imagen a escala de grises.

Paso 5: Ecudlizacion del histograma de la imagen a escala de grises

img gray eq = cv2Z.equalizeHist (img gray)
cv2 imshow (img gray eq)

Como resultamos, obtenemos:

Figura 83.Imagen ecualizada a escala de grises — foto mar.

116] Dora Maria Ballesteros, Diego Renza

Si comparas esta imagen con la imagen a escala de grises original (Paso 3), notaras
una gran diferencia. Es mas clara. ;Cémo crees entonces que es el histograma de
la imagen ecualizada?

Paso 6: Histograma de la imagen a escala de grises ecualizada

hist2 = cv2.calcHist ([img gray eqgl, [0],None, [256], [0,256])
plt.plot (hist2)

Figura 84. Histograma de la imagen ecualizada a escala de grises — foto mar.

Este histograma es significativamente diferente al obtenido en el Paso 4. Ahora, una
gran parte de los pixeles de la imagen tienen niveles de color mayores a 128, y, por
lo tanto, la imagen tiene una apariencia clara. Por otro lado, es tipico en los histogra-
mas ecualizados que se tengan numerosos picos de ocurrencia, y que no se tengan
curvas suavizadas como en los histogramas de imagenes naturales (sin ecualizar).

A continuacion, dibujaremos el histograma por banda de color y ecualizaremos la
imagen a color.

Paso 7: Histograma de la imagen a color (histograma por cada banda de color)

img RGB=cv2.cvtColor (img, cv2.COLOR BGR2RGB)

color = (‘r’,’g’,'b’") -

for i,col in enumerate (color) :
histr = cv2.calcHist ([img RGB], [i],None, [256], [0,256])
plt.plot (histr,color = col)
plt.xlim([0,256])

plt.show ()

En este punto es pertinente explicar que cuando leemos imagenes con OpenCV, las
bandas de color quedan en orden contrario al del espacio RGB. Es decir, primero la
banda B (azul), después la banda G (verde), y finalmente, la banda R (roja). Por ello, se
hace necesario convertir de BGR a RGB, y posteriormente dibujar el histograma de
cada una de las bandas (se puede realizar en graficas independientes, o en la misma
grafica como con este c6digo).

El histograma que obtenemos es:

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 11 7|

Figura 85. Histograma por banda de la imagen a color — foto mar.

Cada histograma se ha dibujado con el color correspondiente a su banda. El his-
tograma de la banda roja tiene la mayor parte de sus pixeles por debajo del color
50. El histograma de la banda verde tiene la mayor parte de sus pixeles con color
cercano a 50. Mientras que, el histograma de la banda azul tiene dos zonas de color
que sobresalen, alrededor de 50 y alrededor de 100, esta ultima con mayor cantidad
de pixeles. Aunque los histogramas son diferentes entre si, tienen en comun que en
los tres casos la cantidad de pixeles por encima del color 128 es practicamente cero.

Paso 8: Ecudlizacion del histograma de la imagen a color

H, S, V = cv2.split(cv2.cvtColor (img, cv2.COLOR RGB2HSV))

V_equ = cvZ2.equalizeHist (V)

img equ = cv2.cvtColor(cv2.merge ([H, S, V_equ]), cv2.COLOR HSV2RGB)
cv2_ imshow (img equ)

El proceso de ecualizacion de la imagen lo realizaremos en la banda V del espacio
de color HSV. Para lo cual, primero convertiremos la imagen de RGB a HSV, poste-
riormente realizaremos un split en las tres bandas, para asi ecualizar Unicamente la
bandaV. Finalmente, volvemos a unir las tres bandas del espacio HSV (con la bandaV
ecualizada), y convertimos de HSV a RGB. La imagen a color ecualizada es:

Figura 86. Imagen ecualizada a color — foto mar.

118 Dora Maria Ballesteros, Diego Renza

Mejoro con relacién a la imagen del Paso 1, jcierto? Bueno, ya has aprendido un
concepto de procesamiento de imagenes que tiene una aplicacion practica. Cuando
vuelvas a cambiar el brillo de una imagen, recuerda que lo que estas haciendo es un
proceso de ecualizacion de su histograma.

Espero que te haya gustado esta tematica. Si quieres ampliar la informacion de histo-
gramas en OpenCV, te invito a consultar la documentacién de la libreria’.

6.5. RUIDO EN IMAGENES

En esta seccion aprenderemos a reconocer tres tipos diferentes de ruido presen-
tes en imagenes: guassiano (gaussian), uniforme (uniform), y sal y pimienta (salt and

pepper).
6.5.1. Ruido gaussiano:

Este ruido se caracteriza porque su distribucion (histograma) tiene la forma de una
campana de gauss, en la que existe un valor central (con gran parte de los pixeles del
ruido), y pocos pixeles en los colores extremos. La forma y comportamiento esta
definida por el promedio y la varianza. Si la varianza es baja, la campana de gauss es
angosta; mientras que, si la varianza es alta, la campana de gauss es ancha. El prome-
dio es el valor central de la campana.

Vamos ahora a generar este tipo de ruido para adicionarlo a una imagen a color y
visualizar su efecto. Para ello utilizaremos el siguiente codigo en Python:

import cv2

import numpy as np

from google.colab.patches import cv2 imshow

img = cv2.imread (“/content/Fig89.ipg”)

noise = np.zeros((img.shape[0], img.shape[l]),dtype=np.uint8)
gaussian noise = np.zeros((img.shape[0], img.shape[l], img.sha-
pel2]),dtype=np.uint8)

gaussian noise([:,:,0]=cv2.randn(noise, 128, 30)
gaussian noisef[:,:,1]=cv2.randn(noise, 128, 30)
gaussian noise([:,:,2]=cv2.randn(noise, 128, 30)

cv2_ imshow (gaussian noise)

Lo primero que hacemos es crear una matriz de ceros del mismo tamano de la
imagen a la cual le adicionaremos el ruido. Posteriormente, con la instruccion
cv2.randn® vamos a generar ruido gaussiano. Debemos seleccionar el valor
central de la distribucion gaussiana (i), y la desviacion estandar (o); para nuestro
caso u = 128, y o = 30. Este ruido gaussiano lo creamos para cada una de las
bandas a color (banda 0, banda | y banda 2, de gaussian_noise). El resultado se
presenta a continuacion:

7 https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_histograms/py_ta-
ble_of_contents_histograms/py_table_of_contents_histograms.html#table-of-content-histograms
8 https://docs.opencv.org/4.5.3/d2/de8/group__core__array.html#tgaeff1f61e972d133a04ce3a5f81cf6808

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON |1 1 9|

Figura 87. Imagen a color — ruido gaussiano.

Para verificar que el ruido obtenido es de tipo gaussiano, utilizamos el siguiente

codigo:

import matplotlib.pyplot as plt
repetir este paso por canal
hist = cv2.calcHist ([gaussian noise], [0],None, [256], [0,256])
plt.plot (hist)
plt.show ()
@) (b) ()

Figura 88. Histograma por banda de la imagen a color — ruido gaussiano.

Se verifica que los histogramas de la Figura 88 de cada uno de los canales, efectiva-
mente tienen forma de campana de gauss.

Como siguiente paso, leemos una imagen en Colaboratory?’:

img = cv2.imread(“/content/Fig89.jpg”)
img.shape

img=cv2.resize (img, (640, 480),
cv2_ imshow (img)

interpolation = cv2.INTER AREA)

Figura 89. Imagen a color — villa de leyva. Fuente: repositorio personal de los autores.

9 Esta imagen hace parte del repositorio personal del autor de este libro

[120]| Dora Maria Ballesteros, Diego Renza

Y adicionamos el ruido que previamente hemos creado, asi:

noisy img gn = cv2.add(img, (gaussian noise*0.5).astype(np.uint8))
cv2_ imshow (noisy img gn)

El ruido gaussiano se multiplica por 0.5 para no saturar a la imagen, y se convierte en
formato entero de 8 bits con astype (np.uint8). Posteriormente, se adiciona
a la imagen a color con la instruccion cv2 . add, obteniendo el siguiente resultado:

Figura 90.1magen a color con ruido gaussiano — villa de leyva.

iCual es el efecto de este tipo de ruido en la imagen?

Rta: La foto luce “envejecida”.

6.5.2. Ruido uniforme:

Otro ruido tipico en imagenes es el ruido uniforme.A diferencia del ruido anterior,
este tiene una distribucion uniforme de sus colores, es decir que no existe un color
central, sino que todos los colores (o tonos) tienen la misma cantidad de pixeles (o
aproximadamente la misma cantidad).

El procedimiento para crear este tipo de ruido es similar al caso anterior. Debemos
crear una matriz de ceros del mismo tamano de la imagen, y posteriormente para
cada una de las bandas de color creamos el ruido. Soélo que en este caso utilizamos
la instruccion cv2 . randu, en lugar de cv2 . randn. Podemos utilizar el siguiente
codigo en Python:

noise = np.zeros((img.shape[0], img.shape[l]),dtype=np.uint8)
uniform noise = np.zeros((img.shape[0], img.shape[l], img.sha-
pel2]),dtype=np.uint8)

uniform noisel[:,:,0]=cv2.randu(noise, 0, 256)

uniform noisel[:,:,1]=cv2.randu(noise, 0, 256)
uniform:noise[:,:,2J=cv2.randu(noise, 0, 256)

cv2_ imshow (uniform noise)

Obteniendo el siguiente resultado:

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON |‘| 21 |

Figura 91. Imagen a color — ruido uniforme.

Como siguiente paso dibujamos el histograma, banda a banda, asi:

repetir este paso por canal
hist = cv2.calcHist ([uniform noise], [0],None, [256], [0,256])
plt.plot (hist)
plt.show ()
Obteniendo:
@) (b) (©)

Figura 92. Histograma por banda de la imagen a color — ruido uniforme.

Aunque el histograma que obtenemos no tiene una perfecta distribucién uniforme,
la cantidad de pixeles para cada uno de los tonos (0 a 255) es muy similar entre
si. Para el tamano de imagen que hemos utilizado en este ejemplo, la cantidad de
pixeles por canal es 480 x 640 = 307.200. Esta cantidad de pixeles dividido en los
256 tonos es igual a 1.200. Si se revisa con detalle los histogramas, precisamente las
ocurrencias oscilan alrededor de ese valor.

Finalmente, adicionamos el ruido a la imagen a color, con el siguiente cédigo en
Python:

noisy img un = cv2.add(img, (uniform noise*0.5).astype(np.uint8))
cv2 imshow(noisy img un)

Cuyo resultado es:

[122] Dora Maria Ballesteros, Diego Renza

Figura 93. Imagen a color con ruido uniforme — villa de leyva.

{En qué se diferencia esta imagen de la obtenida al adicionar el
ruido gaussiano?

Rta: aparte de envejecida, tienen pequenos “granulos” o “puntos
de arena” en toda la imagen. El efecto es notorio en zonas am-
plias y de pocos detalles, como el cielo o las nubes.

6.5.3. Ruido sal y pimienta:

Este tipo de ruido tiene dos tonos, uno correspondiente a la sal y el otro a la pi-
mienta. Para crear ruido de este tipo, lo primero que debemos hacer es crear ruido
uniforme para cada una de las bandas de color, y posteriormente aplicar un proceso
de umbralizacion (similar al que utilizamos cuando convertimos una imagen a escala
de grises en una imagen BW). Dependiendo del valor del umbral seleccionado, ten-
dremos mas o menos pixeles correspondientes a sal y a pimienta.

Para el siguiente codigo en Python el umbral seleccionado es 10,y a los pixeles que
superen el umbral se les asigna el color 255 (maxima escala).

sp_noise=np.zeros ((img.shape([0], img.shape[l], img.shape[2]),d-
type=np.uint8)

ret,impulse noisel=cv2.threshold(uniform noise[:,:,0],10,255,cv2.
THRESH BINARY)

ret,impulse noisel=cv2.threshold(uniform noise[:,:,1],10,255,cv2.
THRESH BINARY)

ret,impulse noise2=cv2.threshold(uniform noise[:,:,2],10,255,cv2.
THRESH BINARY)

sp noisel:,:,0]=impulse noise0

sp_noise[:,:,1]=impulse noisel

sp noisel:,:,2]=impulse noise2

cv2_ imshow (sp noise[:,:,0])

iEn este caso obtendremos poca pimienta y mucha sal!

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON |1 23|

Figura 94.1magen a color con ruido sal y pimienta, con th = 10.

Y sus histogramas por banda, son:

repetir este paso por canal

hist = cv2.calcHist ([sp noisel], [2],None, [256],[0,256])
plt.plot (hist) -

plt.show ()

Obteniendo:

(@) (b) ()
Figura 95. Histograma por banda de la imagen a color — ruido sal y pimienta con th = 10.

Ahora, vamos a fijar un umbral alto, por ejemplo, de 200:

sp_noise=np.zeros ((img.shape[0], img.shape[l], img.shape[2]),d-
type=np.uint8)

ret, impulse noise(O=cv2.threshold(uniform noisef[:,:,0],200,255, -
CV2.THRESH_BINARY)

ret, impulse noisel=cv2.threshold(uniform noisef[:,:,1],200,255, -
CV2.THRESH_BINARY)

ret, impulse noise2=cv2.threshold(uniform noisel[:,:,2],200,255, -
CV2.THRESH_BINARY)

sp_noise[:,:,0]=impulse noiseO

sp_noise[:,:,1]=impulse noisel

sp_noise[:,:,2]=impulse noise2

cv2_ imshow (sp noise[:,:,0])

iEn este caso obtendremos poca sal y mucha pimiental!

[124] Dora Maria Ballesteros, Diego Renza

Figura 96.1magen a color con ruido sal y pimienta, con th = 200.

Y sus histogramas, son:

@) (b) ()
Figura 97. Histograma por banda de la imagen a color — ruido sal y pimienta con th = 200.

Y finalmente adicionamos este ruido a la imagen, asi:

noisy img sp = cv2.add(img, (sp_noise*0.5) .astype(np.uint8))

cv2_imshow(noisy img sp)

Figura 98. Imagen a color con ruido sal y pimienta, th = 200 — villa de leyva.

{En qué se diferencia esta imagen de la obtenida al adicionar el
ruido uniforme?

Rta: es mucho mas notorio el efecto granular que en la imagen
con ruido uniforme.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON |‘| 25|

6.6. FILTROS ESPACIALES

En esta seccion entenderemos y aplicaremos el concepto de filtro espacial. Mate-
maticamente lo abordaremos en la Seccion 6.7, pero por ahora, de forma concep-
tual y practica realizaremos el filtrado de ruido en imagenes.

Lo primero que vamos a realizar es comparar el efecto que tiene en una imagen
los tres diferentes tipos de ruido que se explicaron en la Seccién 6.5. La Figura 99
presenta un ejemplo.

(2) (b) (c)

Figura 99. Imagen de playa con tres tipos distintos de ruido: (a) sal y pimienta, (b) guassia-
no, (c) uniforme. Fuente: repositorio personal de los autores.

Pero, jcomo las diferenciamos!?

* Empecemos con la imagen central, el efecto que tiene es de
“envejecida”, entonces esa imagen contiene ruido gaussiano.

* Ahora, comparemos las imagenes de los extremos, ambas
tienen un efecto “granular”. La imagen de la izquierda tiene
ruido sal y pimienta, por ser mas evidente el efecto granular;
mientras que, la de la derecha tiene ruido uniforme.

A continuacion, por medio de ejemplos se ilustrara el efecto que tienen diferentes
filtros espaciales en imagenes con diferentes tipos de ruido.

Empezaremos con la imagen que tienen ruido sal y pimienta, a la cual le aplicamos
un filtro tipo promedio. Este filtro 2D es similar al filtro de promedio 1D que cono-
cimos al inicio de este libro, pero en este caso es una matriz con todos sus valores
iguales a uno dividido en su tamano (igual a filas x columnas). Por ejemplo, si el ta-
mano del filtro es (5 x 5), entonces cada posicion del filtro tendra el peso de 1/25,
como se presenta en la siguiente Figura.

Figura 100. Filtro de promedio (5 x 5).

[126] Dora Maria Ballesteros, Diego Renza

Una vez hemos leido la imagen en Python, aplicamos el filtro con el siguiente cédigo:

fl sp = cv2.blur(noisy img sp, (5,5), 0)
cv2 imshow (fl sp)

Este filtro lo aplicamos a la imagen denominada noisy_img_sp, cuyo resultado es la
imagen fl_sp, la cual se presenta a continuacion.

Figura 101.1magen filtrada con filtro de promedio — ruido sal y pimienta.

El segundo tipo de filtro que vamos a evaluar es el filtro gausisano. En este caso, los
valores de la matriz varian entre si, teniendo mayor peso la posicién central del fil-
tro,y de menor peso las posiciones de los extremos. En este tipo de filtro los pesos
decrecen de forma gaussiana a medida que se alejan de la posicion central, como se
presenta en la siguiente figura:

Figura 102. Filtro gaussiano (5 x 5). Se ha encerrado en un recuadro rojo la posicién
central del filtro.

Para el filtro gausisano se utiliza el siguiente codigo en Python:

f2 sp = cv2.GaussianBlur(noisy img sp, (5,5), 0)
cv2_ imshow (f2_ sp)

Cuyo tamano del filtro es también (5 x 5),y la salida en este caso se denomina f2_sp.
La imagen filtrada se presenta a continuacion:

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON |1 27|

Figura 103.Imagen filtrada con filtro de gaussiano — ruido sal y pimienta.

Finalmente, filtraremos la imagen con un filtro de mediana (no confundir con el
filtro de promedio). Este tipo de filtro difiere a los dos anteriores en que no existe
una matriz de pesos del filtro. Se realiza un proceso de ordenamiento de los valores
de los pixeles de la imagen de una region de igual tamano al del filtro, y se selecciona
el valor correspondiente a la posicion central de los pixeles ordenados.

El cédigo en Python es:

f3 sp = cv2.medianBlur (noisy img sp, 5)

cv2_ imshow (£3_sp)

La imagen filtrada corresponde a f3_sp, como se presenta en la siguiente figura.

Figura 104.Imagen filtrada con filtro de mediana — ruido sal y pimienta.

La forma en que cada uno de estos filtros opera sobre la imagen, se explicara en
detalle en la Seccion 6.7.

Por ahora, quiero que respondas la siguiente pregunta.

iCual imagen filtrada consideras que presenta mejor calidad?,
es decir, ;qué filtro seleccionarias para eliminar ruido tipo sal y
pimienta?

Rta: Para este tipo de ruido, el filtro de mediana es la mejor
opcion.

(128 Dora Maria Ballesteros, Diego Renza

En la segunda parte de esta seccion, buscaremos un filtro para una imagen que
contiene ruido tipo gaussiano. Partiremos con el filtro de promedio (Figura 72), y
seguiremos con otro tipo de filtro denominado filtro bilateral (Figura 73).

Figura 105. Imagen filtrada con filtro de promedio — ruido gaussiano.

El filtro bilateral tiene en cuenta tres parametros para calcular el valor de salida:
diametro de la vecindad (d), varianza a nivel de color (o,,,,), Y varianza a nivel de
ubicacion espacial (0pqce)-

e d es el diametro de cada vecindad de pixeles. Si es negativo, se calcula a
partir de 0, qc-

Cuando o, es alto, entonces, los colores mas alejados dentro de la
vecindad se mezclan, obteniendo largas areas de color casi-homogéneo.
Cuando 0y, es alto, entonces, los pixeles mas alejados entre si se mez-
clan (espacialmente hablando).

Este tipo de filtro es similar al filtro gaussiano, en términos de la cercania en ubica-
cion espacial, pero incluye el concepto de cercania de color también.

El siguiente es el cédigo en Python para el filtro bilateral con d =9, o, = 10,
Ospace = 10

blurl = cv2.bilateralFilter (noisy img sp,15,50,100)
cv2_ imshow (blurl)

Figura 106. Imagen filtrada con filtro bilateral — ruido gaussiano.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 1 29'

{Cual imagen filtrada consideras que presenta mejor calidad?,
es decir, ;Qué filtro seleccionarias para eliminar ruido tipo gaus-
sinoal’

Rta: Para este tipo de ruido, el filtro bilateral es la mejor opcion.

Puedes complementar la informacion de los filtros espaciales de esta seccion en
https://docs.opencv.org/4.x/d4/d | 3/tutorial_py_filtering.html

6.7. CONVOLUCION

En esta seccion comprenderemos el concepto de “convolucion” en imagenes. Estric-
tamente hablando, realmente realizaremos una operacion de correlacion entre un fil-
tro y una imagen, pero, teniendo en cuenta que, en la comunidad académica de vision
por computador y de aprendizaje profundo el nombre utilizado para esa operacion
es el de convolucién, utilizaremos ese nombre en este libro.

Lo primero a tener en cuenta es que la convolucién es una operacion que requiere
dos matrices, una de las cuales es la imagen, y la otra es el filtro. Tipicamente, los
filtros tienen la misma cantidad de filas que de columnas, por ejemplo, de 3 x 3, pero
se podrian disefar filtros con dimensiones que no sean iguales entre si. Cada una
de las posiciones del filtro se denominan “pesos”. Conceptualmente, el filtro debe
tener una dimension menor a la de la imagen para poder realizar un proceso de
“barrido” sobre ella.

Con un ejemplo ilustraremos el proceso:

Figura 107.1magen y filtro para operacion de convolucion.

El primero paso consiste en adicionarle un borde a la imagen con valores de ceros,
ampliando su dimension en 2 filas y dos columnas. Es decir, para nuestra Imagen de
ejemplo, la cual es de (5 x 5), al incluirle el borde quedara de (7 x 7).

Figura 108.Imagen de entrada con borde.

[130]| Dora Maria Ballesteros, Diego Renza

El propésito de adicionarle el borde a la Imagen de entrada es que el resultado de la
convolucion (Imagen filtrada) contenga la misma cantidad de filas y de columnas que
de la Imagen de entrada. Cuando el tamano del filtro es de 3 x 3, el borde es de 2
filas (una superior y una inferior) y dos columnas (una a la izquierda y una a la dere-
cha); cuando el filtro es de tamano 5x5, el borde es de 4 filas (dos superiores y dos
inferiores) y 4 columnas (dos a la derecha y dos a la izquierda), y asi sucesivamente.

Como segundo paso, el filtro se superpone sobre la Imagen de entrada, ubicandolo
en el extremo superior izquierdo. Posteriormente, se realiza la multiplicacion de los
pixeles de la Imagen con los pesos del filtro. Si el filtro es de tamafno 3 x 3, entonces
se realizan 9 multiplicaciones. Finalmente, se suma el resultado de las multiplicacio-
nes, y el valor obtenido se asigna al primer pixel de la imagen (primera fila, primera
columna). Hay que tener en cuenta que, si el resultado de la operacion anterior es
negativo, se escribe un cero en el pixel de salida correspondiente. Por otro lado, si
el resultado es superior a 255, se escribe 255.

El proceso se presenta a continuacién:

Figura 109. Proceso de convolucion: Paso 2. Se sombrea en amarillo el pixel central de la
imagen, para el paso correspondiente.

Como tercer paso, el filtro se desplaza una posicion a la derecha, y se repite de nue-
vo el proceso de realizar las multiplicaciones, sumar su resultado y asignar al pixel
correspondiente de la imagen de salida (primera fila, segunda columna). El proceso
se presenta en la siguiente figura.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON |‘| 31 |

0 o |o]o
0 m 3 0] o
0 |10 o
R E R ER R
EIIERE I !
olwof|w|3|3|0]o 1
olololo|ofo]o '
Imagen de entrada con borde Fil

Figura 110. Proceso de convolucién: paso 3.Se sombrea en amarillo el pixel central de la
imagen, para el paso correspondiente.

Como cuarto paso, y asi sucesivamente, se desplaza de nuevo el filtro una posicion
a la derecha, se realizan las correspondientes multiplicaciones, se suman sus valores
y se asigna al pixel de la imagen de salida que corresponda. Una vez el filtro se des-
plaza y llega al borde de la imagen, debe desplazarse de nuevo, empezando por la
segunda fila de la imagen, primera columna. El proceso de desplazamiento se realiza
de forma iterativa, hasta que se recorra por completo a la imagen de entrada. La
ubicacion del pixel central para cada uno de los pasos del proceso de convolucion y
la direccion del desplazamiento se presentan a continuacion:

0|0 0 0

o 1] 30 30

L0} o307 | 30

|30 30

ol te+30 | 30

10 | 10307 30

=] =] [=1 =] =] =] =]
=

shshshs s bs| =

= = = [=] =] = =

0|0 0 0

Figura 111.Pixel central en el proceso de convolucién: barrido de la imagen de izquierda a
derecha, y de arriba abajo.

Para el presente ejemplo, el resultado de la convolucion es:

[132] Dora Maria Ballesteros, Diego Renza

O 0] 0]ad| %0
O Of @ | &) 120
O Of O | &) 120
O 0Of O | &) 120
O 0] 0]ad| %0

Figura 112. Imagen filtrada.

Para saber cual es el tamano del borde a adicionarle a la imagen, utilizaremos las
siguientes ecuaciones:

W,=Ww- W +1 Ecuacion 50
H=H-H+1 Ecuacion 51

Donde W , W,, W, corresponden a la cantidad de columnas de la imagen de entra-
da con borde, del filtro y de la imagen filtrada (output), respectivamente. Mientras
que, H,H, H , corresponden a la cantidad de filas de la imagen de entrada con borde,
del filtro y de la imagen filtrada, respectivamente.

Entonces, si queremos que la imagen de salida tenga 5 x 5 y estamos utilizando un
filtro de 3 x 3, necesitamos que la imagen de entrada con borde sea de 7 x 7, tenien-
do en cuenta que al reemplazar los valores anteriores en la ecuacion 50 o ecuacion
51, tenemos que 5 =7- 3+1.A la imagen de entrada sin borde (cuyas dimensiones
son iguales a la de la imagen de salida), debemos adicionarle 2 filas y 2 columnas, o,
en otras palabras, un borde de | rodeando a la imagen.

6.8. DETECCION DE BORDES

En esta subseccion abordaremos el tema de deteccion de bordes en imagenes. Lo
primero, es saber que, asi como existen filtros cuyo propésito consiste en reducir el
ruido de una imagen (como los vistos en el Capitulo 6.6.), también tenemos filtros
cuyo objetivo es detectar el borde de una imagen. Mientras los primeros cumplen
que la sumatoria de sus pesos es igual a |, en los segundos (deteccién de bordes) se
cumple que la sumatoria de sus pesos es igual a 0.

Adicionalmente, se pueden detectar bordes en una sola direccién o multi-direccion.
Dentro de los filtros mas conocidos en la literatura tenemos Prewitt, Sobel y Lapla-
ciano.Y como algoritmo de deteccion de bordes (que incluye etapa de pre-procesa-
miento, filtrado y pos-procesamiento), tenemos el algoritmo Canny'°.

Empecemos con el filtro Prewitt. Es una clase de detector de bordes aplicando la
diferencia entre pixeles de primer orden. Puede detectar bordes en el eje horizon-

10 Oztiirk, S., & Akdemir, B. (2015). Comparison of edge detection algorithms for texture analysis on glass pro-
duction. Procedia-Social and Behavioral Sciences, 195, 2675-2682.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 1 33'

tal o en el eje vertical. Este filtro utiliza un tamano de 3x3, donde la fila o columna
central son de valor 0,y las filas o columnas de los extremos son de valor | y -1.A
continuacion, se presenta el filtro Prewitt para cada direccion de deteccién de borde.

Figura 1 13.Filtro Prewitt (3 x 3).

En el caso del filtro Sobel, también se detectan bordes en la direccion vertical y
horizontal, pero en este caso, se realiza un énfasis en el pixel central de las filas o
columnas cuyos pesos son distintos de cero, realizando una deteccion mas fuerte
de los cambios de la imagen utilizando la primera derivada. En la siguiente figura se
presenta el filtro Sobel.

Figura 1 14.Filtro Sobel (3 x 3).

Por otro lado, el filtro Laplaciano se basa en la segunda derivada de la imagen (o dife-
rencia de segundo orden)''. Existen dos versiones del filtro Laplaciano, en la primera,
se computa la diferencia entre el pixel central y el promedio de sus vecinos directos
(arriba, abajo, izquierda, derecha), y en la segunda, se computa la diferencia entre el
pixel central y el promedio de todos sus vecinos (incluidas las esquinas). La version
basica y la alternativa se presentan a continuacion'?,

Figura 1 15.Filtro Laplaciano (3 x 3).

Finalmente, tenemos el algoritmo o filtro Canny, el cual realiza varias etapas, las
cuales se resumen a continuacion'¥'%:

11 https://www.sciencedirect.com/topics/engineering/laplacian-filter.

12 Nixon, M. S., & Aguado, A. S. (2008). Low-level feature extraction (including edge detection). Feature Extrac-
tion and Image Processing. 3rd edi. Linacre House/Jordan Hill/Oxford: Elsevier, 115-79.

13 https://docs.opencv.org/4.x/da/d22/tutorial canny.html

14 https://docs.opencv.org/3.4/da/d5c/tutorial_canny_detector.html

|134]

Dora Maria Ballesteros, Diego Renza

Reduccion de ruido: es una etapa de pre-procesamiento que consiste en
reducir el ruido presente en la imagen, por medio de un filtro Gaussiano
de tamano 5 x 5.

Identificacion del gradiente de intensidad de la imagen: se filtra la imagen
obtenida en el paso anterior tanto con un filtro Sobel de deteccion de
bordes horizontales,como de deteccion de bordes verticales, obteniendo
G,y G, respectivamente.A partir de las dos imagenes resultantes (una
por cada filtro Sobel), se calcula la imagen gradiente, tanto en magnitud
como en fase, aplicando las siguientes ecuaciones:

|G| = \/Gx + Gy Ecuacion 52

G
4=tg! (y/ GX) Ecuacion 53

La direccién del gradiente siempre es perpendicular a los bordes. Se aproxima a
uno de los cuatro posibles angulos: horizontal, vertical, diagonal derecha, diagonal

izquierda.

C.

Supresion de los no maximos: esta etapa y la siguiente hacen parte del
pos-procesamiento. Consiste en remover los pixeles no deseados, que no
correspondan con el borde de la imagen. Si existen varios pixeles vecinos
en la direccion del gradiente que son potenciales bordes, se identifica
cudl de ellos es un maximo local, y ese es el pixel que se conversa para la
siguiente etapa del algoritmo.

Umbralizacion con histéresis: en esta Ultima fase se eliminan falsos bor-
des, a partir de un proceso de histéresis con dos umbrales. Se define un
umbral alto y un umbral bajo. Si el potencial borde supera al umbral alto,
entonces se considera un borde real. Si, por el contrario, es menor que
el umbral bajo, se descarta. Para los potenciales bordes cuya intensidad
se encuentra entre el umbral bajo y el umbral alto, la decisién de incluir-
se como un verdadero borde o de eliminarse depende de sus pixeles
vecinos. Si éstos son bordes, se considera también como borde; en caso
contrario, se descarta.

Una de las ventajas del algoritmo Canny es que detecta de forma simultanea bordes
en cuatro direcciones (vertical, horizontal, diagonal derecha y diagonal izquierda).
Adicionalmente, el borde detectado es delgado, gracias a sus etapas de pos-proce-
samiento posteriores al filtrado (supresion de los no-maximos y umbralizacion con
histéresis).

A continuacion, aplicaremos los filtros anteriores a una imagen, para comparar las
diferencias de forma visual entre los bordes detectados en cada caso.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON |1 35|

import cv2

import numpy as np

from google.colab.patches import cv2 imshow
img = cv2.imread(‘coctel.jpg’)

cv2_imshow (img)

prewitt x = np.array([[1l, 1, 11,
B [0, o, o1,
(-1, -1, -111, dtype=np.float32)
print (prewitt x)

figl= cv2.filter2D(img, -1, prewitt x, borderType=0)
cv2_ imshow (figl)

figlg = cv2.cvtColor (figl, cv2.COLOR BGR2GRAY)
ret, figlbw = cv2.threshold(figlg,50,255,cv2.THRESH BINARY)
cv2 imshow (255-figlbw) # imagen filtrada con Prewitt x

prewitt y = np.array([[1, 0, ~-1],

[11 Or _1]1

[1, 0, =111, dtype=np.float32)
print (prewitt y)

fig2= cv2.filter2D(img, -1, prewitt y, borderType=0)
cv2_imshow (fig2)

fig2g = cv2.cvtColor (fig2, cv2.COLOR BGR2GRAY)
ret, fig2bw = cv2.threshold (fig2g,50,255,cv2.THRESH BINARY)
cv2_imshow (255-fig2bw) # imagen filtrada con Prewitt y

fig3bw = figlbw + fig2bw
cv2_imshow (255-fig3bw) # imagen filtrada con Prewitt x + Prewitt y

sobel x = np.array

[
1, -2, -111, dtype=np.float32)
print (sobel x)

figd= cv2.filter2D(img, -1, sobel x, borderType=0)
cv2_ imshow (fig4)

figdg = cv2.cvtColor (figd, cv2.COLOR BGR2GRAY)

ret, figdbw = cv2.threshold(figdg, 50,255, cv2.THRESH BINARY) # imagen
filtrada con Sobel x

cv2_imshow (255-figdbw)

sobel y = np.array ([
[2
[1

[11 Or _l]l
14 Or _2]1
, 0, =111, dtype=np.float32)

print (sobel y)

figh= cv2.filter2D(img, -1, sobel y, borderType=0)
cv2_imshow (fig5)

figbg = cv2.cvtColor (figh, cv2.COLOR BGR2GRAY)
ret, fighbw = cv2.threshold (figbg, 50,255,cv2.THRESH BINARY) # imagen
filtrada con Prewitt y -
cv2_ imshow (255-figSbw)

136 Dora Maria Ballesteros, Diego Renza

figbbw = figdbw + figbbw
cv2 imshow (255-fig6bw) # imagen filtrada con Sobel x + Sobel y

laplacianol = np.array([[O0, -1, 01,

[711 4I 711/

[0, -1, 011, dtype=np.float32)
print (laplacianol)

fig7= cv2.filter2D(img, -1, laplacianol, borderType=0)
cv2_imshow (fig7)

fig7g = cv2.cvtColor (fig7, cv2.COLOR BGR2GRAY)
ret, fig7bw = cv2.threshold(fig7g,50,255,cv2.THRESH BINARY)
cv2_imshow (255-fig7bw) # imagen filtrada con Laplaciano basico

laplaciano2 = np.array([[-1, -1v -17,

[_11 8/ _1}1

[-1, -1, =111, dtype=np.float32)
print (laplaciano?2)

fig8= cv2.filter2D(img, -1, laplaciano2, borderType=0)
cv2 imshow (fig8)

fig8g = cv2.cvtColor (fig8, cv2.COLOR BGR2GRAY)
ret, fig8bw = cv2.threshold(fig8g,50,255,cv2.THRESH BINARY)
cv2 imshow (255-fig8bw) # imagen filtrada con Laplaciano alternativo

edges_canny = cv2.Canny (img,220,55)
cv2 imshow (255-edges canny) # imagen filtrada con algoritmo Canny

Empezaremos analizando las imagenes filtradas con Prewitt. La obtenida con Prewitt_x
detecta bordes especialmente en la direccién horizontal, como la altura de la bebida
dentro de la copa, o el soporte horizontal del techo del restaurante. En el caso de
la imagen filtrada con Prewitt_y, no se detectan los bordes mencionados anterior-
mente, pero si los bordes correspondientes a las columnas verticales de soporte del
techo. Finalmente, la imagen obtenida al sumar las dos anteriores es mas completa
que sus antecesoras por separado, mostrando bordes en ambas direcciones.

En el caso de las imagenes obtenidas con Sobel, los resultados son similares a las
obtenidas con Prewitt. Sin embargo, se puede apreciar mayor demarcacion en algu-
nos bordes.

Por otro lado, las imagenes obtenidas con el filtro Laplaciano (en sus dos versiones)
muestran el borde vertical de la copa, aunque es mas notorio con el Laplaciano al-
ternativo. En ambos casos, las imagenes filtradas tienen bordes delgados, a diferencia
de sus antecesoras.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 1 37'

Figura 116. Imagen de entrada y deteccién de bordes con diferentes tipos de filtros.
Fuente: repositorio personal de los autores.

Finalmente, con el algoritmo Canny se tienen bordes delgados en todas las direc-
ciones, y aparecen bordes en zonas de la imagen que con los otros filtros no se
visualizaban, por ejemplo, las ondulaciones en el tejado.

[138| Dora Maria Ballesteros, Diego Renza

6.9. TRANSFORMADA DFTY DCT

En esta seccion se abordan dos transformadas en imagenes, del dominio espacial al
dominio frecuencial. Especificamente, las correspondientes con la Transformada de
Fourier Discreta (DFT) y la Transformada Consenoidal Discreta (DCT).

6.9.1. DFT (Discrete Fourier Transform)

La DFT de una imagen se calcula a partir de la siguiente ecuacion:

Teniendo en cuenta que,

Donde F(k,I) es la Transformada Discreta de Fourier, mientras que f(a,b) es la ima-
gen en el dominio espacial de tamano (M,N). Es decir, el resultado de la DFT se
obtiene al multiplicar la imagen en el dominio espacial f(a,b) por la funcién base (que
en este caso es una senal exponencial compleja) y sumar el resultado para cada
pareja (k,1). Se resalta que tanto los valores (a,b) como los valores (k,I) son enteros.

Cuando se grafica la DFT de una imagen, no se puede relacionar facilmente el resul-
tado obtenido con la imagen original. Tipicamente, si existen cambios significativos
de direccion en la imagen, éstos se veran reflejados en la DFT (patrones de lineas
blancas). Si la imagen se invierte en el eje vertical (flip vertical), el efecto que se tiene
en su DFT es precisamente el de inversion. De forma similar, si la imagen si invierte
respecto al aje horizontal (flip horizontal), también se tendra el efecto en su DFT de
inversion. En ambos casos, la inversion en la DFT es en relacién con el eje vertical, de
tal forma que la DFT de la imagen invertida horizontal es igual a la DFT de la imagen
invertida vertical. Por otro lado, si a la imagen se le aplica doble inversion (una por
cada eje), su DFT es igual al de la imagen original (sin invertir).

La Figura 84 presenta un ejemplo de una imagen y su correspondiente DFT para
diferentes tipos de manipulaciones de la imagen. Se resalta que la DFT de la imagen
original es igual a la DFT de doble flip; mientras que, la DFT de flip vertical es igual
a la DFT de flip horizontal.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON |1 39'

Figura I17.1magen con su respectiva DFT.
Para calcular la DFT de una imagen en Python, utilizamos el siguiente codigo:

Paso 1) Cargue de librerias de lectura de la imagen

import numpy as np

import cv2

from google.colab.patches import cv2 imshow
url= “/content/oficina.png” n

img = cv2.imread (url)

Paso 2) Convertir la imagen RGB a escala de grises y representarla en punto flo-
tante de 32 bits

img gray=cv2.cvtColor (img, cv2.COLOR BGR2GRAY)
cv2_imshow (img gray)
img float32 = np.float32 (img gray)

Paso 3) Calcular la DFT vy visualizar el resultado en escala logaritmica

dft = cv2.dft (img float32, flags = cv2.DFT COMPLEX OUTPUT)
dft _shift = np.fft.fftshift (dft

)
magnitude spectrum = 20*np.log(cv2.magnitude(dft shift[:,:,0],dft |
shift[:,:,11))

cv2 imshow (magnitude spectrum)

[140| Dora Maria Ballesteros, Diego Renza

Paso 4) Invertir la imagen en el eje vertical, calcular su DFT y graficar

flipVertical = cv2.flip(img float32, 1)

cv2 imshow (flipVertical)

dft = cv2.dft (flipVertical, flags = cv2.DFT COMPLEX OQUTPUT)

dft shift = np.fft.fftshift (dft) o o

magnitude spectrum = 20*np.log(cv2.magnitude (dft shift[:,:,0],dft |
shift[:,:,11))

cv2_ imshow (magnitude spectrum)

Paso 5) Invertir la imagen en el eje horizontal, calcular su DFT y graficar

flipHorizontal = cv2.flip(img float32, 0)

cv2 imshow (flipHorizontal)

dft = cv2.dft (flipHorizontal, flags = cv2.DFT COMPLEX OUTPUT)
dft shift = np.fft.fftshift (dft) - -
magﬁitude_spectrum = 20*np.log(cv2.magnitude (dft shift[:,:,0],dft |
shift[:,:,11))

cv2_imshow (magnitude spectrum)

Paso 6) Doble inversién de la imagen (horizontal y vertical), calcular su DFT y gra-
ficar

flipBoth = cv2.flip(img_float32, -I)

cv2 imshow (flipBoth)

dft = cv2.dft (flipBoth, flags = cv2.DFT COMPLEX OUTPUT)

dft shift = np.fft.fftshift (dft) - -

magHitude_spectrum = 20*np.log(cv2.magnitude (dft shift[:,:,0],dft |
shift[:,:,11))

cv2_ imshow (magnitude spectrum)

6.9.2. DCT (Discrete Cosine Transform)

Esta transformada es muy Uutil para la compresion de imagenes, dado que gran parte
de la informacion de la imagen (la mas significativa o representativa) se concentra
en pocos coeficientes espectrales. Hace parte del algoritmo de compresién de ima-
genes conocido como JPEG (Joint Photographic Experts Group).

A diferencia de la DFT, en este caso todos sus coeficientes son reales, calculados a
partir de la siguiente ecuacion:

Donde C(k,I) corresponde a la DCT de la imagen f{a,b) de tamano (M,N).

Tipicamente, la DCT se calcula por bloques de la imagen, es decir, la imagen se divide
en zonas y a cada zona se la aplica la DCT. A continuacién, se presenta un ejemplo
de la DCT para la imagen completa, y para diferentes tamanos de bloque.

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON |141 |

Figura 118. DCT de la imagen de la Figura 84.a.

A diferencia de la DFT, si es posible encontrar una relacion directa entre la DCT y
la imagen de entrada, cuando el tamano del bloque es pequeno. Por ejemplo, en la
Figura |18b, se alcanza a apreciar la pared y la persiana de la oficina; mientras que,
en la Figura |18c y Figura |18d, se visualizan lineas diagonales correspondientes a
la separacion entre filas de ladrillos. Cuando el tamano del bloque es de (32,32) o
superior, ya no se alcanzan a identificar los patrones de la imagen.

En este caso, el codigo de Python para obtener las graficas anteriores, se presenta
a continuacion:

Paso) Cargue de librerias de lectura de la imagen

import numpy as np

import cv2

from google.colab.patches import cv2 imshow
url= “/content/oficina.png”

img = cv2.imread (url)

[142] Dora Maria Ballesteros, Diego Renza

Paso 2) Convertir la imagen RGB a escala de grises y representarla en punto flo-
tante de 32 bits

img gray=cv2.cvtColor (img, cv2.COLOR BGR2GRAY)
cv2_ imshow (img gray)
img float32 = np.float32(img gray)

Paso 3) Calcular la DCT Yy visualizar el resultado

dct = cv2.dct (img float32)
cv2_imshow (dct)

Nota: en este caso no se necesitan re-ordenar los coeficientes, como si se realizo
en el caso de la DFT. Adicionalmente, no se calcula la magnitud, dado que los valores
son reales. Tampoco, se grafica en escala logaritmica.

Paso 4) Definir el tamano del block, calcular la cantidad de bloques y crear un DCT
de salida de valores cero.

B=2 #blocksize

imgl = img float32

h= imgl.shape[0]

w =imgl.shape[1l]
blocksV=np.int (h/B)
blocksH=np.int (w/B)
transformed=np.zeros ([h, w])

Nota: este ejemplo esta disenado para bloques cuadrados. En este caso es de (2,2).

Paso 4) Aplicar la DCT por bloque y escribir el resultado en la zona de salida co-
rrespondiente.

for row in range(blocksV) :
for col in range (blocksH) :
currentblock = cv2.dct (imgl [row*B: (row+1) *B,col*B: (col+1) *B])
transformed[row*B: (row+1l) *B,col*B: (col+1) *B]= currentblock
cv2_imshow ((transformed))

6.9.3. Comprensiéon de imagenes con la DCT

Como se habia mencionado previamente, una de las aplicaciones de la DCT es en la
comprension de imagenes, especificamente en el estandar |JPEG. A continuacion, se
explicara brevemente en que consiste ese método de comprension.

Lo primero a resaltar es que JPEG es un método de comprension con pérdida de
informacion (o lossy), que significa que parte de los datos se pierden en el proceso
de compresion y no se puede recuperar la imagen exactamente igual a la original; no
obstante, de forma visual, no se apreciaran diferencias significativas entre la imagen
original y su version comprimida. Su principal ventaja sobre métodos de compresion
sin pérdida de informacion (o lossless) es que permite obtener una tasa de compre-

PROCESAMIENTO DIGITAL DE SENALES UTILIZANDO PYTHON | 143'

sion mayor, conocida como CR (compression rate), la cual corresponde a la relacion
entre el tamaho de la imagen sin comprimir y el tamafo de la imagen comprimida.

Los principales bloques que hacen parte del método JPEG son: DCT, cuantizacion
inteligente, y codificacion RL y Huffman. De forma muy resumida, los pasos son los
siguientes'®:

a.

Aplicar DCT por bloques de la imagen, por ejemplo, de tamano (8,8). El
resultado es otra imagen del mismo tamano, cuyos datos corresponden a
coeficientes espectrales.

Aplicar cuantizacion a los coeficientes espectrales, dividiendo su valor
entre un factor de cuantizacion. De esta manera, se reduce la cantidad de
valores de salida (y la precision de los datos). Adicionalmente, el proceso
es inteligente, dado que el factor de cuantizacién no es constante, sino
que, depende de la amplitud del coeficiente a cuantizar. A los coeficientes
que representan frecuencias mayores se les aplica un factor de cuantiza-
cion mayor.

A los coeficientes cuantizados se les aplica el método de codificacion
run-length (RL). Este método aprovecha la gran cantidad de ceros con-
secutivos que se obtienen al combinar la DCT con la cuantizacion inte-
ligente. El barrido sobre los coeficientes cuantizados se realiza en forma
de zig-zag, empezando en el extremo superior izquierdo de la matriz
(DCT cuantizada). La longitud de la trama de salida es mucho menor ala
cantidad de coeficientes cuantizados del paso b.

Finalmente, se aplica codificacion Huffman. La idea principal de este mé-
todo es representar los “simbolos” de mayor ocurrencia de la trama con
la menor cantidad de bits, mientras que, los de menor ocurrencia con
la mayor cantidad de bits. Entonces, los coeficientes espectrales cuanti-
zados y codificados con RL tendran una representacion binaria que es
significativamente menor a multiplicar el tamafio de la imagen por 8 bits
(en el caso de imagenes a escala de grises) o por 24 bits (en el caso de
imagenes a color de 3 canales). Los valores de compresion pueden llegar
a 100 veces.

15

https:

cs.stanford.edu/people/eroberts/courses/soco/projects/data-compression/lossy/jpeg/index.htm

